Top 9 # Cách Giải Phương Trình Bậc 3 Có 2 Nghiệm Xem Nhiều Nhất, Mới Nhất 3/2023 # Top Trend | Maiphuongus.net

Cách Giải Phương Trình Bậc 2 Và Tính Nhẩm Nghiệm Pt Bậc 2

Bài viết này Trung tâm Gia sư Hà Nội chia sẻ với các em cách giải phương trình bậc 2 và tính nhẩm nghiệm của PT bậc 2 trong trường hợp đặc biệt.

Có nhiều dạng toán trong chương trình Toán 9 và ôn thi vào lớp 10 môn Toán cần phải biết phương pháp giải phương trình bậc 2 thì mới làm được.

Định nghĩa phương trình bậc 2

Phương trình bậc hai là phương trình có dạng: ax 2 + bx + c = 0. Với

x là ẩn số

a, b, c là các số đã biết sao cho: a ≠ 0

a, b, c là những hệ số của phương trình và có thể phân biệt bằng cách gọi tương ứng với hệ số của x (theo phương trình trên thì a là hệ số bậc hai, b là hệ số bậc một, c là hằng số hay số hạng tự do).

Phương pháp giải phương trình bậc 2

Giải phương trình bậc 2: ax 2 + bx + c = 0 theo biệt thức delta (Δ)

Công thức Vi-ét về quan hệ giữa các nghiệm của đa thức với các hệ số của nó. Trong trường hợp phương trình bậc hai một ẩn, được phát biểu như sau:

Nếu phương trình bậc 2 có:

Xuất phát từ định lý Vi-ét, chúng ta có các dạng toán tính nhẩm như sau:

Nếu phương trình có dạng x 2 – (u+v)x + uv = 0 thì phương trình đó có hai nhiệm u và v.

Nếu phương trình có dạng x 2 + (u+v)x + uv = 0 thì phương trình có hai nghiệm -u và -v.

Như vậy, với dạng này chúng ta cần thực hiện 2 phép nhẩm: “Phân tích hệ số c thành tích và b thành tổng”. Trong hai phép nhẩm đó, chúng ta nên nhẩm hệ số c trước rồi kết hợp với b để tìm ra hai số thỏa mãn tích bằng c và tổng bằng b.

Khi tiến hành, bạn nhẩm trong đầu như sau: Tích của hai nghiệm bằng c, mà tổng lại bằng b.

Tóm lại:

x 2 – 5x + 6 = 0 Nhẩm: “Tích của hai nghiệm bằng 6, mà tổng lại bằng 5”. Hai số đó là: 2 và 3 vì 6 = 2×3 và 5 = 2 + 3. Vậy phương trình có hai nghiệm x = 2, x = 3.

x 2 – 7x + 10 = 0 Nhẩm: “Tích của hai nghiệm bằng 10, mà tổng lại bằng 7”. Hai số đó là: 2 và 5 vì 10 = 2×5 và 7 = 2 + 5. Vậy phương trình có hai nghiệm x = 2, x = 5.

Ví dụ phương trình:

Do loại này đã quá quen thuộc và thường gặp, nên bài viết không xét các ví dụ cho trường hợp này mà tập trung vào Dạng 1 và Dạng 3.

Dạng 3: Hai nghiệm là nghịch đảo của nhau

Nếu thay v = 1 vào (1) thì chúng ta sẽ có trường hợp nhẩm nghiệm quen thuộc a + b + c = 0, với a = 1, b = -(u+1), c = u.

Nếu thay v = -1 vào (1) thì bạn sẽ có trường hợp nhẩm nghiệm a – b + c = 0, với a = 1, b = -(u-1), c = -u.

Nếu u ≠ 0 và v = 1/ u thì phương trình (1) có dạng:

Cách Giải Phương Trình Bậc 3

( 1. Phương trình có dạng: 1), trong đó a, b, c, d là các số thực cho trước .

2. Cách giải: Bây giờ ta đi xét cách giải phương trình (1).

Vì ( nên ta có thể chia hai vế của phương trình (1) cho a. Do vậy ta chỉ cần đi giải phương trình dạng : 2) .

Đặt ((, khi đó 2) trở thành : 3)

Trong đó: .

Đặt . Để xét số nghiệm của (3), ta khảo sát sự tương giao của hàm số với trục Ox.

Chú ý hàm bậc ba cắt Ox tại

· Một điểm hàm luôn đơn điệu hoặc

· Hai điểm

· Ba điểm

Xét hàm số , ta có: .

* Nếu là hàm đồng biến có một nghiệm.

* Nếu và

.

Từ đây ta có các kết quả sau:

* Nếu có nghiệm duy nhất. Để tìm nghiệm này ta làm như sau:

Đặt , khi đó (3) trở thành:

Ta chọn u,v sao cho: , lúc đó ta có hệ:

(là nghiệm phương trình: 4)

( 4) có hai nghiệm:

(*)

Công thức (*) gọi là công thức Cardano.

* Nếu , khi đó (3) có hai nghiệm, một nghiệm kép ( hoặc ) và một nghiệm đơn. Tức là:

hoặc (**).

* Nếu , khi đó (3) có ba nghiệm phân biệt và ba nghiệm này nằm trong khoảng . Để tìm ba nghiệm này ta đặt , với ta đưa (3) về dạng: (5), trong đó .

Giải (5) ta được ba nghiệm , từ đây suy ra ba nghiệm của phương trình (3) là :

(***).

Trong một số trường hợp để giải phương trình bậc ba ta đi tìm một nghiệm rồi thực hiện phép chia đa thức và chuyển phương trình đã cho về phương trình tích của một nhị thức bậc nhất và một tam thức bậc hai.

Ví dụ 1: Giải phương trình : .

Giải: Ta thấy phương trình có một nghiệm (dùng MTBT) nên ta biến đổi phương trình : .

Ví dụ 2: Giải phương trình : .

Giải: Ta có: nên phương

trình có duy nhất nghiệm:

.

Ví dụ 3: Giải phương trình : (1).

Giải:

Ta có: nên phương trình có ba nghiệm thuộc khoảng . Đặt với

(2) trở thành:

.

Vì nên ta có: .

Vậy phương trình có ba nghiệm: .

Ví dụ 4: Tìm m để phương trình sau có ba nghiệm phân biệt

(1).

Giải: Vì tổng các hệ số của phương trình bằng 0 nên phương trình có nghiệm nên :

Phương trình (1) có ba nghiệm phân biệt có hai nghiệm phân biệt khác 1 .

Vậy là giá trị cần tìm.

Tìm m để đồ thị hàm số sau cắt trục Ox tại hai điểm phân biệt:

Giải:

Ta có phương trình hoành độ giao điểm:

(2)

Yêu cầu bài toán có hai nghiệm phân biệt.

TH 1: có hai nghiệm phân biệt, trong đó có một nghiệm

bằng 1. Điều này có .

TH 2: có một nghiệm khác 1. Khi đó xảy ra hai khả năng

Khả năng 1: .

Khả năng 2: .

Vậy các giá trị của m cần tìm là: .

Giải: Giả sử phương trình có ba nghiệm. Ta chứng minh (1).

* Nếu ba nghiệm của phương trình trùng nhau thì đúng.

* Nếu ba nghiệm phương trình chỉ có hai nghiệm trùng nhau hoắc ba nghiệm đó là phân biệt. Khi đó ta có: ,

( trong đó: )

.

đpcm.

Từ cách chứng minh trên ta suy ra được nếu có (1) thì phương trình có ba nghiệm

Nguyễn Tất Thu

Công Thức Nghiệm Và Cách Giải Phương Trình Bậc 2 Cần Biết

({displaystyle ax^{2}+bx+c=0})

với x là ẩn số chưa biết và a, b, c là các số đã biết sao cho a khác 0. Các số a, b, và c là những hệ số của phương trình và có thể phân biệt bằng cách gọi tương ứng hệ số bậc hai, hệ số bậc một, và hằng số hay số hạng tự do.

II. Giải phương trình bậc 2

Các cách giải phương trình bậc hai phổ biến thường được sử dụng trong chương trình giáo dục là nhân tử hóa (phân tích thành nhân tử), phương pháp phần bù bình phương, sử dụng công thức nghiệm, hoặc đồ thị.

1. Phương pháp công thức nhân tử hóa

Đây là phương pháp phân tích một phương trình bậc hai về dạng tích của các nhân tử. Một khi biểu thức bậc hai đã được phân tích thành nhân tử, bạn có thể tìm được đáp án khả thi cho giá trị của x bằng cách cho từng nhân tử bằng không và giải. Vì đang cần tìm giá trị của x sao cho phương trình bằng không, bất kỳ x nào khiến một nhân tử bằng không cũng sẽ là nghiệm khả thi của phương trình đó.

Ví dụ: Giải phương trình sau (x^2 + 5x + 6 = 0) bằng phương pháp nhân tử chung?

(x^2 + 5x + 6 = 0)

(leftrightarrow (x+3)(x-2)=0)

(leftrightarrowleft[begin{array}{l} x+3=0 \ x-2=0 \ end{array}right.)

(leftrightarrowleft[begin{array}{l} x=-3 \ x=2 \ end{array}right.)

Vậy nghiệm của phương trình bậc 2 là x = -3 hoặc x = 2

2. Phương pháp phần bù bình phương

Trong đại số sơ cấp, phần bù bình phương là phương thức chuyển đổi một đa thức bậc hai theo dạng ({displaystyle ax^{2}+bx+c,!}) thành dạng:

({displaystyle a(x-h)^{2}+k,})

Theo nghĩa này, “hằng số k” không phụ thuộc vào x. Biểu thức bên trong dấu ngoặc đơn có dạng (x − k). Do đó, ta có thể chuyển đổi ({displaystyle ax^{2}+bx+c,!}) thành ({displaystyle a(x-h)^{2}+k,}) và ta phải tìm h và k.

Ví dụ: Giải phương trình (2x^2 + 4x – 4 = 0) bằng phương pháp phần bù bình phương?

({displaystyle Leftrightarrow x^{2}+2x=2})

({displaystyle Leftrightarrow x^{2}+2x+1=2+1})

({displaystyle Leftrightarrow left(x+1right)^{2}=3})

({displaystyle Leftrightarrow x+1=pm {sqrt {3}}})

({displaystyle Leftrightarrow x=-1pm {sqrt {3}}})

3. Phương pháp công thức nghiệm phương trình bậc 2

Đối với phương trình (ax^2+bx+c=0(aneq 0)) và biệt thức (Δ=b^2−4ac):

Công thức nghiệm của phương trinh bậc hai:

(x1= dfrac{-b+sqrt{Delta}}{2}) và (x2= dfrac{-b-sqrt{Delta}}{2})

+) Nếu Δ=0 thì phương trình có nghiệm kép (x1=x2=-dfrac{b}{2a})

+) Nếu Δ<0 thì phương trình vô nghiệm.

Ví dụ: Giải phương trình bậc 2 sau: (2x^2-7x+3=0)

(2x^2-7x+3=0)

Ta có: a=2, b=-7, c=3

Do đó phương trình có hai nghiệm phân biệt:

(x_1=dfrac{-(-7)-sqrt{25}}{2.2}=dfrac{7-5}{4}=dfrac{1}{2})

(x_2=dfrac{-(-7)+sqrt{25}}{2.2}=dfrac{7+5}{4}=dfrac{12}{4}=3)

4. Phương pháp đồ thị

Phương pháp giải:Ta biết rằng hàm số: (y = ax^2 + bx + c), với a ≠ 0 được gọi là Parabol (P), có đồ thị:

Số nghiệm của phương trình (ax^2 + bx + c = 0) chính bằng số giao điểm của đồ thị parabol (y = ax^2 + bx + c) với trục hoành.Để biện luận theo tham số m, số nghiệm của phương trình: (ax^2 + bx + c = m)ta xét vị trí tương đối của đường thẳng (d): y = m với Parabol (P): (y = ax^2 + bx + c)Để giải một phương trình bằng phương pháp đồ thị ta thực hiện tuần tự theo các bước sau đây:

Bước 1: Chuyển phương trình ban đầu về dạng: (ax^2 + bx + c = g(m))

Bước 2: Vẽ (P): (y = ax^2 + bx + c)

Bước 3: Khi đó, số nghiệm của phương trình bằng số giao điểm của đường thẳng (d): y = g(m) với Parabol (P): (y = ax^2 + bx + c).

Bước 4: Bằng việc dịch chuyển đường thẳng (d) song song với Ox ta sẽ nhận được kết luận tương ứng.

Bước 5: Kết luận.

Chú ý: Phương pháp này tỏ ra đặc biệt hiệu quả với yêu cầu về nghiệm thuộc (α; β) cho trước.

III. Một số phương trình quy về phương trình bậc hai

Phương trình trùng phương: (ax^4 + bx^2 + c = 0), (a ≠ 0) (*)

Phương pháp: đặt (t = x^2 ≥ 0) thì (*) (⇔ at^2 + bt + c = 0)

(ax^4 + bx^3 + cx^2 + dx + e = 0) với (dfrac{e}{a} =dfrac{d}{b}^2 ne 0)

Phương pháp: Chia hai vế cho (x^2 ne 0), rồi đặt (t = x + dfrac{a}{x} ⇒ t^2 = (x + dfrac{a}{x})^2) với (a = dfrac{d}{b})

((x+a)(x+b)(x+c)(x+d) = ex^2) với (a.b = c.d)

Phương pháp giải: Đặt ( t = x^2 + ab + dfrac{a+b+c+d}{2}x) thì phương trình

(⇔ (t + dfrac{a+b-c-d}{2}x)(t – dfrac{a+b-c-d}{2}x) = ex^2) (có dạng đẳng cấp)

Phương pháp giải: Đặt (x = t-dfrac{a+b}{2} ⇒ (t + a)^4 + (t – a)^4 = c) với (a = dfrac{a-b}{2})

IV. Giải bất phương trình bậc 2

Bất phương trình bậc hai một ẩn là bất phương trình dạng:

Đặt (Δ = b^2 – 4ac). Ta có các trường hợp sau:

1. Nếu Δ < 0 và:

a < 0 thì bất phương trình không nghiệm đúng với mọi giá trị thực của x. Tập nghiệm là: ({displaystyle varnothing }).

2. Nếu Δ = 0 và:

a < 0 thì bất phương trình không nghiệm đúng với mọi giá trị thực của x. Tập nghiệm là: ({displaystyle varnothing }.)

({displaystyle x_{1}={frac {-b-{sqrt {Delta }}}{2a}};quad quad x_{2}={frac {-b+{sqrt {Delta }}}{2a}}})

Khi đó:

Nếu a < 0 thì tập nghiệm của bất phương trình là: ({displaystyle (x_{1};x_{2}),})

Cách Giải Một Số Phương Trình Quy Về Phương Trình Bậc 2

Tên : Trương Quang An Giáo viên Trường THCS Nghĩa Thắng Địa chỉ : Xã Nghĩa Thắng ,Huyện Tư Nghĩa ,Tỉnh Quảng Ngãi Điện thoại : 01208127776 CÁCH GIẢI MỘT SỐ PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC 2 I. HỆ THỐNG MỘT SỐ PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC 2:Ta thường gặp một số dạng phương trình có thể quy về phương trình bậc hai để giải sau đây: Dạng 1. Phương trình tích.Dạng 2. Phương trình chứa ẩn ở mẫu. Dạng 3. Phương trình trùng phương.Dạng 4. Phương trình dạng: a[f(x)]2 + bf(x) + c = 0 hoặc . Dạng 5. Phương trình dạng (x + a)4 + (x + b)4 = c.Dạng 6. Phương trình dạng (x + a)(x + b)(x + c)(x + d) = m, trong đó: a+b = c+d, m 0. Dạng 7. Phương trình dạng (x + a)(x + b)(x + c)(x + d) = mx2, trong đó: ab = cd, m 0.Dạng 8. Phương trình đối xứng .Dạng 9. Phương trình hồi quy. II. CÁCH GIẢI MỘT SỐ PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC 2: 1. Phương trình tích: là phương trình có một vế bằng không, vế còn lại là một tích của các nhân tử chứa ẩn. 1.1. Cách giải: Áp dụng công thức: Ta giải n phương trình (1), (2), . . ., (n) rồi lấy tất cả các nghiệm của chúng. 1.2. Ví dụ 1 Giải các phương trình: (2x2 + x - 4)2 = 4x2 - 4x + 1 Giải: (2x2 + x - 4)2 = 4x2 - 4x + 1 (2x2 + x - 4)2 - (2x - 1)2 = 0 (2x2 + x - 4 + 2x - 1)(2x2 + x - 4 - 2x + 1) = 0 (2x2 + 3x - 5)(2x2 - x - 3) = 0 Giải các phương trình (1) và (2) ta được x1 = 1; x2 = -2,5; x3 = -1; x4 = 1,5 Vậy S = 1.3. Nhận xét:- Loại phương trình này các em HS đã được làm quen từ lớp 8 - THCS. Lên lớp 9, sau khi học xong về phương trình bậc hai một ẩn, để giải một phương trình bậc cao (bậc lớn hơn 2), đối với HS THCS thường dùng phương pháp biến đổi đưa về phương trình tích. Muốn vậy HS phải có kĩ năng phân tích đa thức thành nhân tử (chỉ cần phân tích thành tích các nhân tử bậc nhất hoặc bậc hai). - Chú ý tới các tính chất của phương trình bậc ba: ax+ bx+ cx + d = 0 Nếu a + b + c + d = 0 thì phương trình có một nghiệm x = 1 Nếu a - b + c - d = 0 thì phương trình có một nghiệm x = -1. - Đa thức bậc n có các hệ số nguyên. Nếu có nghiệm nguyên thì nghiệm nguyên đó phải là ước của hệ số tự do (Định lí về sự tồn tại của nghiệm nguyên của phương trình với hệ số nguyên).Khi đã nhận biết được nghiệm (chẳng hạn x = x0), ta phân tích được vế trái của phương trình thành nhân tử (chứa một nhân tử là x - x0). *Ví dụ 2. Giải phương trình: (*) từđóphântíchđược: . Kết luận: Phương trình có 3 nghiệm: x1 = -1; 2. Phương trình chứa ẩn ở mẫu:Loại phương trình này, HS cũng đã được làm quen từ lớp 8 và đây cũng là một dạng phương trình thường gặp trong chương trình toán THCS. 2.1. Cách giải: Khi giải phương trình chứa ẩn ở mẫu, ta thường giải theo 4 bước sau:Bước 1. Tìm điều kiện xác định (ĐKXĐ) của phương trình; Bước 2. Quy đồng mẫu thức hai vế rồi khử mẫu thức; Bước 3. Giải phương trình nhận được; Bước 4. Kết luận: Trong các giá trị tìm được của ẩn, loại các giá trị không thoả mãn ĐKXĐ, các giá trị thoả mãn ĐKXĐ là nghiệm của phương trình đã cho. 2.2. Ví dụ: Giải phương trình: (*) Giải:- ĐKXĐ: x 1. Khi đó (*) (**) Giải phương trình (**), ta được x1 = 1 (không thoả mãn ĐKXĐ) x2 = - 2 (thoả mãn ĐKXĐ). Vậy phương trình đã cho có nghiệm duy nhất là x = - 2 2.3. Lưu ý: + Trong thực hành, cần luôn lưu ý việc kiểm tra giá trị tìm được của ẩn (sau bước 3). Một phương trình chứa ẩn ở mẫu sẽ vô nghiệm nếu ở bước 3 không tìm được giá trị của ẩn và cũng sẽ vô nghiệm nếu các giá trị tìm được ở bước 3 đều không thoả mãn ĐKXĐ. + Cách giải trên là cách giải thường dùng nhưng chỉ nên áp dụng với các phương trình mà sau khi ta quy đồng, khử mẫu 2 vế thì được phương trình bậc không lớn hơn 2, không phức tạp. Đối với một số dạng phương trình chứa ẩn ở mẫu đặc biệt, ta phải dùng phương pháp đặt ẩn phụ để giải. Ví dụ: Giải phương trình: Giải: -ĐKXĐ: .Ta thấy x = 0 không là nghiệm của phương trình. Chia cả tử và mẫu của mỗi phân thức cho x 0, ta được: .Đặt = t, phương trình trở thành: (*) (ĐK: t - 1; t 3) -Với t1 = 1, ta có: = 1 (vô nghiệm) ; với t2 = , ta có: = (vô nghiệm).Vậy phương trình đã cho vô nghiệm. *Chú ý : Dùng phương pháp giải ở trên, chúng ta cũng giải được các phương trình có dạng sau : Dạng1:. Dạng2 :.Dạng 3: 3. Phương trình trùng phương: 3.1. Định nghĩa: Phương trình trùng phương là phương trình có dạng ax4 + bx2 + c = 0, trong đó a, b, c là các số cho trước, a 0. 3.2. Cách giải:-Khi giải dạng phương trình này, ta thường đưa về phương trình bậc hai bằng cách đặt ẩn phụ x2 = t (t 0), ta có phương trình bậc hai trung gian : at2 + bt + c = 0. -Giải phương trình bậc hai trung gian này, rồi sau đó trả biến: x2 = t. Nếu những giá trị tìm được của t thoả mãn t 0, ta sẽ tìm được nghiệm của phương trình ban đầu. 3.3. Ví dụ: *Ví dụ 1: Giải phương trình: (1) Giải: Đặt x2 = t, ĐK: t 0. Phương (1) trở thành 3t2 - 2t - 1 = 0 (1') Giải (1') ta được: t1 = 1 (thoả mãn ĐK); t2 = (thoả mãn ĐK) Vậy phương trình đã cho có 4 nghiệm 3.4. Nhận xét : Về số nghiệm của phương trình trùng phương, ta thấy: + Phương trình trùng phương vô nghiệm khi: Phương trình bậc hai trung gian vô nghiệm, hoặc chỉ có nghiệm âm. + Phương trình trùng phương có nghiệm khi: Phương trình bậc hai trung gian có nghiệm không âm. + Phương trình trùng phương có 4 nghiệm phân biệt (khi đó 2 cặp nghiệm luôn đối nhau) khi phương trình bậc hai trung gian có 2 nghiệm dương phân biệt. + Phương trình trùng phương có 3 nghiệm phân biệt (1 nghiệm luôn bằng 0 và 2 nghiệm còn lại đối nhau) khi phương trình bậc hai trung gian có 1 nghiệm bằng 0 và một nghiệm dương. 4. Phương trình dạng: a[f(x)]2 + bf(x) + c = 0 (hoặc ) với a 0: 4.1. Cách giải: +Tìm ĐKXĐ của phương trình (nếu cần). +Đặt f(x) = t (hoặc tương ứng = t). Ta có phương trình: at2 + bt + c = 0 (**) +Giải phương trình (**) bậc hai (ẩn t) +Trả biến và giải tiếp phương trình f(x) = t rồi kết luận. 4.2. Ví dụ: Giải phương trình sau: Giải: .Đặt , ta có: Với t1 = 1, ta có: Với t2 = ta có , phương trình này vô nghiệm. Vậy phương trình đã cho có hai nghiệm 4.3. Nhận xét:- Nhờ phép biến đổi và bằng cách đặt ẩn phụ, ta đưa được phương trình về dạng phương trình bậc hai mà ta đã biết cách giải: at2 + bt + c = 0 Tuy nhiên có một số phương trình phải qua một số bước biến đổi mới xuất hiện dạng tổng quát (như trong ví dụ trên). - Cũng như một số loại phương trình khác đã giới thiệu ở trên, số nghiệm của phương trình ban đầu phụ thuộc vào nghiệm của phương trình bậc hai trung gian. - Phương trình trùng phương (cũng như phương trình bậc hai một ẩn) là những dạng đặc biệt của phương trình: ax2n + bxn + c = 0, trong đó: a0; n nguyên dương (còn gọi là phương trình tam thức). Các phương trình này cũng chỉ là dạng đặc biệt của phương trình: a[f(x)]2 + bf(x) + c = 0, ở đây f(x) = xn. +Ví dụ : Giải phương trình: x2014 - 10x1007+ 9 = 0 Giải : Đặt x1007 = t , ta có phương trình: t2 - 10t + 9 = 0 Vì: 1 - 10 + 9 = 0 nên t1 = 1; t2 = 9 Với t1 = 1 thì x1007 = 1 x = 1; Với t2= 9 thì x1007 = 9 Vậy phương trình có 2 nghiệm là x1 = 1; 5. Phương trình dạng (x + a)4 + (x + b)4 = c: - Ta giải bằng phương pháp đổi biến:Đặt Thay vào và biến đổi, ta được phương trình: 5.2. Ví dụ: Giải phương trình (1) Giải: Đặt Ta có: Đặt t2 = v (ĐK: v 0). Phương trình (1') trở thành: (không thoả mãn ĐK) và (không thoả mãn ĐK).Vậy phương trình đã cho vô nghiệm. 6. Phương trình dạng: (x + a)(x + b)(x + c)(x + d) = m, trong đó a+b = c + d và m 0. 6.1. Cách giải: -Vì a + b = c + d nên ta đặt: x2 + (a + b)x = x2 + (c + d)x = y. - Khi đó, phương trình đã cho có dạng: (y + ab)(y + cd) = m (*) - Giải phương trình (*), ((*) là phương trình bậc hai của y). - Với mỗi giá trị tìm được của y, thay vào x2 + (a + b)x = y rồi tiếp tục giải các phương trình bậc hai ẩn x và đi đến kết luận. 6.2. Ví dụ: Giải phương trình sau: (x + 4)(x + 5)(x + 7)(x + 8) = 4 Giải: a, (x + 4)(x + 5)(x + 7)(x + 8) = 4 (chú ý: 4 + 8 = 5 + 7 = 12) (x2 + 12x + 32)(x2 + 12x + 35) = 4 Đặt x2 + 12x + 32 = y, ta có phương trình: y2 + 3y - 4 = 0 (1) Vì 1 + 3 - 4 = 0 nên (1) có hai nghiệm là y1 = 1 và y2 = - 4. Với x2 + 12x + 32 = y1 = 1 Với x2 + 12x + 32 = y2 = -4 Vậy phương trình đã cho có tập nghiệm là: 6.3. Nhận xét: Với loại phương trình có dạng trên: - Nếu khai triển vế trái ta sẽ được phương trình bậc 4 tổng quát thì sẽ rất khó giải tiếp. Do đó khi gặp phương trình dạng này, cần chú ý tới các hệ số a, b, c, d. Bằng nhận xét, ta nhóm hợp lý, sau đó khai triển mỗi nhóm và đặt ẩn phụ, ta sẽ đưa được về phương trình bậc hai trung gian. - Đôi khi cần linh hoạt biến đổi thì ta mới đưa được về phương trình dạng trên. Ví dụ: Giải các phương trình: (5x + 4)2(5x2 + 8x) = 16 Giải: (5x + 4)2(5x2 + 8x) = 16 x(5x + 4)2(5x + 8) = 16 5x(5x + 4)2(5x + 8) = 80 (25x2 + 40x)(25x2 + 40x + 16) = 80 Đặt 25x2 + 40x + 8 = t, ta có phương trình: (t - 8)(t + 8) = 90 t2 - 64 = 80 t2 = 144 t = 12. Với t = 12, ta có: 25x2 + 40x +8 = 12 25x2 + 40x - 4 = 0 x1;2 = Với t = -12, ta có: 25x2 + 40x +8 = -12 5x2 + 8x - 4 = 0 x3 = ; x4 = -2. Vậy phương trình đã cho có 4 nghiệm là : x1;2 = ; x3 = ; x4 = -2. 7. Phương trình dạng (x + a)(x + b)(x + c)(x + d) = mx2, trong đó: ab = cd, m 0: 7.1. Cách giải:- Ta nhóm [(x + a)(x + b)][(x + c)(x + d)] = mx2 [x2 + ab + (a + b)x][x2 + cd + (c + d)x] = mx2 (x + + a + b)(x + + c + d) = m (vì x 0) - Do ab = cd nên ta đặt ẩn phụ: y = x + = x + (hoặc sai khác một hằng số thuận lợi) thì ta được phương trình: (y + a + b)(y + c + d) = m y2 + (a + b + c + d)x + (a + b)(c + d) - m = 0 àlà phương trình bậc hai ẩn y à dễ dàng làm tiếp. 7.2. Ví dụ: Giải phương trình sau:(x - 3)(x - 9)(x + 4)(x + 12) = 147x2 Gợi ý: Chú ý: -3.12 = -9.4 = -36 à làm tiếp theo cách trên. 8. Phương trình đối xứng: 8.1. Định nghĩa: -Phương trình đối xứng bậc 3 là phương trình có dạng ax3 + bx2 + bx + a = 0 (a 0) -Phương trình đối xứng bậc 4 là phương trình có dạng ax4+bx3 + cx2 + bx + a = 0 (a 0) -Phương trình đối xứng bậc n là phương trình có dạng anxn + an-1xn-1 + . . . + a1x + a0 = 0, trong đó: an = a0, an-1 = a1, . . . , và an 0. 8.2. Chú ý: +Trong phương trình đối xứng, nếu k là nghiệm thì cũng là nghiệm. +Phương trình đối xứng bậc lẻ luôn nhận x = -1 làm một nghiệm. +Phương trình đối xứng bậc chẵn (bậc = 2m) luôn đưa được về bậc m bằng cách đặt ẩn phụ = t. 8.3. Cách giải: Dựa vào chú ý ở trên:-Để giải phương trình đối xứng bậc 3, ta biến đổi đưa về phương trình tích:ax3 + bx2 + bx + a = 0 (x + 1)[ax2 + (b - a)x + a] = 0. -Với phương trình đối xứng bậc 4: ax4 + bx3 + cx2 + bx + a = 0 (a 0), ta giải theo cách sau: +Dễ thấy x = 0 không là nghiệm. Do đó chia 2 vế cho x2 , ta được: at2 + bt + c - 2a = 0 (1) +Giải phương trình (1) rồi trả biến = t à tìm x và kết luận. 8.4. Ví dụ : Giải phương trình : 3x3 - 5x2 - 5x + 3 = 0 Hướng dẫn: Biến đổi thành: (x + 1)(3x2 - 8x + 3) = 0 (Kết luận: Phương trình có 3 nghiệm là ) 9. Phương trình hồi quy: 9.1. Định nghĩa: Phương trình hồi quy là phương trình có dạng: ax4 + bx3 + cx2 + kbx + k2a = 0 (với a.k 0) Nhận xét: Phương trình đối xứng bậc 4 chỉ là một dạng đặc biệt của phương trình hồi quy (với k = 1) 9.2. Cách giải:-Ta thấy x = 0 không phải là nghiệm của phương trình. Chia hai vế của phương trình cho x2, ta được: -Đặt .Ta có phương trình bậc hai (ẩn t): (*) -Giải phương trình (*).Trả biến = t à tìm x và kết luận. 9.3. Ví dụ: Giải phương trình x4 + 4 = 5x(x2 - 2) (1) Giải :-Ta có (1) x4 - 5x3 +10x +4 = 0 à là phương trình hồi quy với k = - 2. -Dễ thấy x = 0 không phải là nghiệm của phương trình. Chia hai vế của phương trình cho x2, ta được : .Đặt t = ,ta có : .Ta có phương trình : Với t = 4 ta có : .Với t = 1 ta có :.Vậy S = . II. MỘT SỐ BÀI TẬP: Bài 1: Giải các phương trình chứa ẩn ở mẫu: a) b) Bài 2: Giải các phương trình bậc cao sau: a)(x2 + x + 1)2 - 3x2 - 3x - 1 = 0 b)x4 +4x3 +3x2 +2x - 1 = 0 Bài 3: Giải các phương trình sau: a) b)