Top 15 # Cách Giải Hệ Phương Trình / 2023 Xem Nhiều Nhất, Mới Nhất 11/2022 # Top Trend | Maiphuongus.net

Giải Bất Phương Trình? Và Cách Giải Hệ Bất Phương Trình? / 2023

Ví dụ về bất phương trình:

2x + 3 ≥ -6

Vế trái của bất phương trình: 2x + 3

Vế phải của bất phương trình: -6

Bất phương trình có hai vế không bằng nhau, có thể lớn hơn hoặc nhỏ hơn. Nghiệm của bất phương trình không phải chỉ là một giá trị mà sẽ bao gồm cả một tập hợp giá trị thỏa mãn điều kiện của bất phương trình.

Có rất nhiều dạng bất phương trình khác nhau như : bất phương trình bậc một, bất phương trình bậc hai, bất phương trình vô tỷ, bất phương trình chứa căn, bất phương trình logarit. Mỗi dạng bài lại có một cách giải bất phương trình khác nhau, tùy theo đặc điểm của bất phương trình.

Nhưng bên trên mình đã ví dụ cho các bạn một cách dễ hiểu nhất về bất phương trình rồi. Các bạn có thể tham khảo.

2. Các dạng của bất phương trình:

* Bất phương trình tương đương

1. Định nghĩa: hai bất phương trình được gọi là tương đương nhau nếu chúng có cùng tập nghiệm.

* Hệ quả: Nếu chuyển một biểu thức từ vế này sang vế kia của phương trình và đổi dấu thì ta được một bất phương trình mới tương đương với phương trình đã cho.

+ Nếu h(x) xác định trên D và h(x)<0 với mọi thì bất phương trình:

* Chú ý: Khi giải bất phương trình cần lưu ý các vấn đề sau

+ Đặt điều kiện (nếu có) trước khi biến đổi bất phương trình.

+ Khi nhân (chia) hai vế bất phương trình với một biểu thức thì chú ý xem biểu thức đó âm hay dương, hoặc biểu thức đó mang cả hai giá trị âm và dương.

+ Khi qui đồng mẫu số của bất phương trình: nếu biết chắc chắn mẫu dương thì không đổi dấu.

* Ví dụ 1: Giải các bất phương trình sau

Định nghĩa: Nhị thức bậc nhất là biểu thức được biến đổi về dạng f(x) = ax+b ;

Định nghĩa: Tam thức bậc hai là biểu thức có dạng fleft( x right) = a{x^2} + bx + c;(a ne 0).

Phương pháp giải bất phương trình đại số 1 ấn Phương pháp 1: Lập bảng

Ví dụ 1: Lập bảng xét dấu f(x)

a) b)Giải

Dấu f(x)

Các Phương Pháp Giải Hệ Phương Trình / 2023

1. Phương pháp giải hệ phương trình bậc hai hai ẩn.

Dạng tổng quát

a) Nếu một trong hai phương trình là bậc nhất thì dễ dàng giải được hệ bằng phương pháp thế. b) Nếu một trong hai phương trình là thuần nhất bậc hai, chẳng hạn . Khi đó phương trình thứ nhất có dạng , phương trình này cho phép tính được . c) Hệ đẳng cấp bậc hai, tức là . Bằng cách khử đi hệ số tự do ta sẽ tìm ra được một phương trình thuần nhất bậc hai để tìm tỉ số d) Trong nhiều trường hợp ta có thể áp dụng phương pháp “tịnh tiến nghiệm” bằng cách đưa vào các ẩn mới (với là các ẩn). Ta sẽ tìm để khi khai triển thì các hạng tử bậc nhất ở cả hai phương trình của hệ đều bị triệt tiêu. Từ đó có hệ đẳng cấp theo mà ta đã biết cách giải.

Đặt . Hệ trở thành :

Vậy ta có hệ .

Dễ dàng giải được hệ này.

2. Phương pháp giải hệ phương trình đối xứng.

a) Hệ phương trình đối xứng loại I.

Cách giải chung là đặt ẩn phụ .

b) Hệ phương trình đối xứng loại II

Cách giải chung là trừ vế theo vế hai phương trình để thu được nhân tử chung .

c) Hệ phương trình đối xứng ba ẩn.

Dạng tổng quát

Nếu ba số thỏa mãn thì chúng là ba nghiệm của phương trình .

3. Hệ phương trình hoán vị.

Dạng tổng quát

Với thường là các hàm đơn điệu (trên một khoảng nào đó)

Một số định lí :

a) Nếu là các hàm đồng biến trên và là nghiệm (trên ) của hệ thì .

b) Nếu là các hàm nghịch biến trên và là nghiệm (trên ) của hệ thì với lẻ, ta có .

c) Nếu nghịch biến và đồng biến trên tập là là nghiệm (trên ) của hệ thì với chẵn, ta có và .

Vì .

4. Phương pháp dùng tính đơn điệu của hàm số.

Phương pháp này chủ yếu dựa vào định lí sau :

Phương trình thứ nhất có thể viết thành :

Thay vào phương trình sau :

Vậy

5. Phương pháp đặt ẩn phụ.

Ví dụ : Giải hệ phương trình

Điều kiện

Cộng vế theo vế hai phương trình :

Trừ vế theo vế hai phương trình :

Vậy nếu ta đặt

Thì ta có hệ

Từ đó dễ dàng tìm được nghiệm của hệ ban đầu.

6. Phương pháp đánh giá bằng bất đẳng thức.

“Chất bất đẳng thức” của hệ này nằm ở phương trình thứ hai.

Điều kiện

7. Phương pháp biến đổi đẳng thức. a) Đưa về phương trình tích.

Ta dễ dàng giải được hệ này.

b) Đưa về phương trình thuần nhất.

Nhận thấy vế trái của có bậc ba và vế phải của có bậc . Để đưa thành một phương trình thuần nhất (thuần nhất bậc ba) thì ta cần nhân vào vế phải một biểu thức bậc .

Dễ dàng giải tiếp hệ này.

8. Phương pháp lượng giác hóa (phép thế lượng giác) 9. Phương pháp hệ số bất định.

Ví dụ : Giải hệ phương trình

Mục đích ở đây là ta sẽ tạo ra một phương trình mà có thể tính được ẩn này theo ẩn kia.

Ta cần phối hợp hai phương trình của hệ để tạo một phương trình bậc hai có ẩn là .

Từ đó được phương trình .

Chuyên đề PT-HPT Diễn đàn Mathscope

Đại Số 9 : Hệ Phương Trình , Giải Bài Toán Bằng Cách Lập Hệ Phương Trình / 2023

Trình duyệt của bạn không hỗ trợ xem video này.

Giới thiệu khóa học

LỚP ÔN LUYỆN CHUYÊN TOÁN

(Rèn chữ không quên rèn người)

THẦY NGUYỄN HUY TÀI EDU

ĐƯỢC TỔ CHỨC VỚI CHƯƠNG TRÌNH NHƯ SAU

HÃY ĐỌC ĐỂ HIỂU VỀ NGƯỜI THẦY MÀ BẠN CHUẨN BỊ HỌC NHÉ, SẼ CÓ ÍCH ĐÓ!

Tạp chí Tri ân http://trian.vn/tin-tuc/noi-chinh-3569/nguyen-huy-tai-nguoi-cong-an-nhan-dan-nguoi-thay-giao-mau-muc-959967,

HÃY ĐĂNG KÝ KẾT HỢP CÁC KÊNH CỦA THẦY ĐỂ VIỆC HỌC CỦA BẠN ĐƯỢC THUẬN LỢI HƠN VÀ ĐỪNG QUÊN CHIA SẺ, LAN TỎA TỚI CÁC BẠN CỦA BẠN ĐỂ CÙNG HỌC TẬP  NHÉ:

https://www.facebook.com/tai.tailocvuong https://www.youtube.com/channel/UCYOZKY5Ta-mv-Ao3tr2ff9A?view_as=subscriber

QUAN ĐIỂM GIÁO DỤC

1 – Giáo dục là MỤC ĐÍCH chứ không phải là PHƯƠNG TIỆN để đạt được thứ khác, MỤC ĐÍCH là để hoàn thiện NHÂN CÁCH cho người học mà NHÂN CÁCH là các tổ hợp tâm lý của người học, coi Giáo dục là một quá trình, đánh giá con người không chỉ đơn giản dựa vào kết quả học tập hay thành tích giáo dục mà là NHÂN CÁCH của con người.

2 – Luôn TÔN TRỌNG nhân cách của người học, dù mỗi người học có mục tiêu cao thấp khác nhau, nhưng chúng ta làm việc với MỤC ĐÍCH hoàn thiện NHÂN CÁCH cao cả hơn là việc chỉ đơn giản đi tìm TRI THỨC.

3 – Coi trọng sự trải nghiệm, phấn đấu, tu dưỡng, trau dồi TRI THỨC: “ Đức năng thắng số”; ý chí : “Ở đâu có ý chí ở đó có con đường”; “Thái độ hơn trình độ” ;“ Tranh thủ hơn cao thủ”…Do đó trong quá trình giáo dục, thầy luôn có những câu chuyện ĐỜI THỰC nhằm giúp người học nhận thức tốt, xác định được tư tưởng, ĐỘNG CƠ, TÂM THẾ của người học từ đó người học xác định được mục tiêu, trách nhiệm đối với việc học.

4 – MỤC ĐÍCH của việc học là để thay đổi khả năng TƯ DUY, có BẢN LĨNH TRI THỨC, TƯ DUY LINH HOẠT, tạo TƯ DUY  ĐỘT PHÁ, thay đổi thái độ theo hướng tích cực, LÀM CHỦ BẢN THÂN.

5 – Con người là tổng hòa các mối quan hệ do đó,coi dạy học là quá trình, là cơ hội Thầy – Trò học tập lẫn nhau về: Thái độ, quan điểm sống, kỹ năng sống, lối sống,… để góp phần đạt được MỤC ĐÍCH của giáo dục.

MỤC TIÊU

1 – Giúp người học đạt được MỤC TIÊU của mình, do đó trước khi học người học cần đặt cho mình một MỤC TIÊU rõ ràng, tuy rằng cao thấp khác nhau chưa quan trọng bằng việc sống, học tập phải có MỤC TIÊU, MỤC ĐÍCH.

2 – Giúp người học tiếp cận được các Modul kiến thức quan trọng ( bạn nên nhớ mỗi năm chỉ có hữu hạn một số Modul, mỗi khóa học là một Modul, mỗi Modul là một Chuyên đề). Giúp học sinh có được cái nhìn tổng quan của Nội dung, Chương trình kiến thức ở mỗi kỳ, mỗi năm học, không dàn chải. Có định hướng rõ ràng.

3 – Hình thành nên cho học sinh kỹ năng tự học, tự định hướng tư duy, giải quyết vấn đề độc lập, không quên hình thành lên kỹ năng làm việc nhóm, từ đó hình thành nên kỹ xảo làm bài, tăng tốc độ làm bài đáp ứng yêu cầu các kỳ thi.

4 – Giúp người học hình thành nên BẢN LĨNH TRI THỨC từ đó hình thành nên bản lĩnh trong cuộc sống.

PHƯƠNG PHÁP

1 – Phương pháp truyền đạt ĐẶC BIỆT, xoáy sâu vấn đề, dễ hiểu, tuân theo qui luật của nhận thức. Bài giảng được đi từ đơn giản đến phức tạp, từ trực quan sinh động đến tư duy trừu tượng, từ tư duy trừu tượng đến thực tiễn. “ Thất bại có nguyên nhân, thành công phải có phương pháp”!

2 – Thay đổi TÂM THẾ của người học là MẤU CHỐT của vấn đề, thay đổi thái độ theo hướng tích cực làm nền tảng cho sự tích cực, chủ động, từ đó xác định được ĐỘNG CƠ cho sự nghiệp học hành, tiếp cận tri thức ở mọi nơi, mọi lúc. “ Thay đổi thái độ, cuộc đời bạn sẽ thay đổi”!

3 – HỌC ĐI ĐÔI VỚI HÀNH, học Toán, Lý, Hóa gắn liền với những ứng dụng thực tiễn, không bị nhàm chán cùng với những câu chuyện đời thực đầy trải nghiệm, giúp người học có được nhãn quan thực tiễn, không xa rời thực tiễn. “ Lý thuyết chỉ là màu xám, còn cây đời mãi mãi xanh tươi”!

4 –  Coi mục đích của việc học là để thay đổi TƯ DUY và TƯ DUY LINH HOẠT không cứng nhắc, từ đó rèn luyện BẢN LĨNH TRI THỨC làm cơ sở cho TƯ DUY ĐỘT PHÁ trong thực tiễn. “ Học mà không hành được cũng chỉ như con Lừa chở đầy sách ” – HỔ GIẤY mà thôi!

NỘI DUNG

1 – Nội dung mỗi năm học (từ Lớp 6 đến Lớp 12) được biên soạn theo các Modul (Chuyên đề), mỗi Modul được biên soạn theo cấu trúc 3 phần.

2 – Mỗi Modul đều được cấu trúc theo 3 phần: Video bài giảng, Bài tập (Tự luận, Trắc nghiệm) và các Đề luyện thi.

3 – Nội dung được biên soạn phù hợp với qui luật nhận thức: Từ đơn giản đến phức tạp (Từ trực quan sinh động đến Tư duy trừu tượng, từ Tư duy trừu tượng đến thực tiễn).

4 – Luyện giải các đề thi thử vào 10, thi THPT QG

5 – CHUYÊN ĐỀ: HỆ PHƯƠNG TRÌNH VÀ GIẢI BÀI TOÁN BẰNG CÁCH LẬP HỆ PHƯƠNG TRÌNH là một chuyên đề RẤT HAY với hệ thống KIẾN THỨC, công thức, cùng với các dạng toán phong phú và đa dạng. Do đó đòi hỏi, người học phải KIÊN TRÌ, học ĐÚNG PHƯƠNG PHÁP, dành nhiều thời gian cho TỰ HỌC để cập nhật được những câu hỏi trong đề thi Tuyển sinh những năm gần đây.

VÌ KIẾN THỨC CHỈ CÓ ĐƯỢC QUA TƯ DUY CỦA CON NGƯỜI! 

 Hãy TÌM KIẾM ĐAM MÊ, THÀNH CÔNG SẼ THEO ĐUỔI BẠN!

CHÚC CÁC BẠN THÀNH CÔNG! HÃY BẬT BÀI HÁT: “ ĐƯỜNG ĐẾN NGÀY VINH QUANG” – SÁNG TÁC CỐ NHẠC SĨ TRẦN LẬP, NGHE NÀO!

SĐT: 098 666 9338 OR 08 28 28 88 66

Hệ Phương Trình Hai Ẩn Là Gì? Bài Tập Và Cách Giải Hệ Phương Trình 2 Ẩn / 2023

Hệ phương trình bậc nhất hai ẩn có dạng : (left{begin{matrix} ax+by=c a’x+b’y=c’ end{matrix}right.)

Minh họa tập nghiệm của hệ hai phương trình bậc nhất hai ẩn:

Định nghĩa hệ phương trình hai ẩn?

((d)parallel (d’)) thì hệ vô nghiệm

((d)times (d’)) thì hệ có nghiệm duy nhất

((d)equiv (d’)) thì hệ có vô số nghiệm

Hệ phương trình tương đương

Dùng quy tắc thế biến đổi hệ phương trình đã cho để được một hệ phương trình mới trong đó có một phương trình một ẩn

Giải phương trình một ẩn vừa có rồi suy ra nghiệm của hệ

Gọi (d): ax + by = c; (d’): a’x + b’y = c’. Khi đó ta có

Phương pháp giải hệ phương trình hai ẩn bậc nhất

Ví dụ 1: Giải hệ phương trình: (left{begin{matrix} x – y = 3 3x – 4y = 4 end{matrix}right.)

(left{begin{matrix} x – y = 3 3x – 4y = 4 end{matrix}right. Leftrightarrow left{begin{matrix} x = y + 3 3(y+3) – 4y = 4 end{matrix}right.)

Nhân cả hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của một ẩn nào đó trong hai phương trình bằng nhau hoặc đối nhau.

Áp dụng quy tắc cộng đại số để được phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 ( phương trình một ẩn)

Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho.

(Leftrightarrow left{begin{matrix} x = y + 3 3y + 9 – 4y = 4 end{matrix}right. Leftrightarrow left{begin{matrix} x = y + 3 y = 5 end{matrix}right. Leftrightarrow left{begin{matrix} x = 8 y = 5 end{matrix}right.)

Vậy hệ có nghiệm duy nhất là (8;5)

Ví dụ 2: Giải phương trình: (left{begin{matrix} x – 5y = 19, (1) 3x + 2y = 6, (2) end{matrix}right.)

Nhân cả 2 vế của phương trình (1) với 3 ta được: (left{begin{matrix} 3x – 15y = 57 3x + 2y = 6 end{matrix}right.)

Trừ từng vế của (1) cho (2) ta có: (-17y = 51 Rightarrow y=-3)

Vậy hệ phương trình có nghiệm duy nhất là (left{begin{matrix} x = 4 y = -3 end{matrix}right.)

Một số dạng hệ phương trình đặc biệt

Hệ hai phương trình hai ẩn x và y được gọi là đối xứng loại 1 nếu ta đổi chỗ hai ẩn x và y đó thì từng phương trình của hệ không đổi.

Đặt (S = x + y; P = xy, (S^2geq 4P))

Giải hệ để tìm S và P

Với mỗi cặp (S;P) thì x và y là hai nghiệm của phương trình (t^2 – St + P = 0)

Ví dụ 3: Giải hệ phương trình: (left{begin{matrix} x + y + 2xy = 2 x^3 + y^3 = 8 end{matrix}right.)

Đặt S = x + y, P = xy. Khi đó phương trình trở thành:

(left{begin{matrix} S + 2P = 2 S(S^2-3P) = 8 end{matrix}right. Leftrightarrow left{begin{matrix} P= frac{2 – S}{2} S(S^2-frac{6-3S}{2})=8 end{matrix}right.)

(Rightarrow 2S^3 + 3S^2 – 6S -16 = 0 Leftrightarrow (S-2)(2S^2+7S+8)=0 Leftrightarrow S = 2 Rightarrow P=0)

Hệ hai phương trình x và y được gọi là đối xứng loại 2 nếu ta đổi chỗ hai ẩn x và y thì phương trình bày trở thành phương trình kia và ngược lại

Trừ vế theo vế hai phương trình trong hệ để được phương trình hai ẩn

Biến đổi phương trình hai ẩn vừa tìm được thành phương trình tích

Giải phương trình tích ở trên để biểu diễn x theo y (hoặc y theo x)

Thế x bởi y (hoặc y bởi x) vào 1 trong hai phương trình trong hệ để được phương trình một ẩn.

Giải phương trình một ẩn vừa tìm được rồi suy ra nghiệm của hệ

Suy ra x, y là nghiệm của phương trình (t^2-2t=0 Leftrightarrow left[begin{array}{l} t = 0 t = 2 end{array}right.)

Vậy nghiệm của hệ phương trình đã cho là (0;2) hoặc (2;0)

Ví dụ 4: Giải hệ phương trình: (left{begin{matrix} x^2 = 3x + 2y y^2 = 3y + 2x end{matrix}right.)

Trừ vế với vế của hai phương trình của hệ, ta được:

(x^2 – y^2 = x-y Leftrightarrow (x-y)(x+y-1) = 0 Leftrightarrow left[begin{array}{l} x=y x=1-y end{array}right.)

Với (x=y Rightarrow x^2 = 3x Leftrightarrow left[begin{array}{l} x=0 x=3 end{array}right.)

Với (x=1-y Rightarrow y^2 = 3y + 2(1-y) Leftrightarrow y^2 -y -2 = 0 Leftrightarrow left[begin{array}{l} y=-1 Rightarrow x=0 y= 2 Rightarrow x=-1 end{array}right.)

Vậy hệ phương trình đã cho có nghiệm (x;y) = (0;0), (3;3), (-1;2), (2;-1)

Hệ phương trình đẳng cấp bậc hai có dạng: (left{begin{matrix} f(x;y) = a g(x;y) = b end{matrix}right.)

Trong đó f(x;y) và g(x;y) là phương trình đẳng cấp bậc hai, với a và b là hằng số.

Xét xem x = 0 có là nghiệm của hệ phương trình không

Nếu x = 0, ta đặt y = tx rồi thay vào hai phương trình trong hệ

Nếu x = 0 không là nghiệm của phương trình ta khử x rồi giải hệ tìm t

Thay y = tx vào một trong hai phương trình của hệ để được phương trình một ẩn (ẩn x)

Giải phương trình một ẩn trên để tìm x từ đó suy ra y dựa vào y = tx

Ví dụ 5: Giải hệ phương trình: (left{begin{matrix} 2x^2 + 3xy + y^2 = 15, (1) x^2 + xy + 2y^2 = 8, (2) end{matrix}right.)

Khử số hạng tự do từ hệ ta được: (x^2 + 9xy – 22y^2 = 0, (3))

Đặt x = ty, khi đó ((3) Leftrightarrow y^2(t^2+9t-22) = 0 Leftrightarrow left[begin{array}{l} y=0 t=2 t=-11 end{array}right.)

Với y = 0, hệ có dạng: (left{begin{matrix} 2x^2 = 15 x^2 = 8 end{matrix}right.) vô nghiệm

Với t = 2, ta được x = 2y ((2) Leftrightarrow y^2 = 1 Leftrightarrow left[begin{array}{l} y_{1} = 1 y_{2} = -1 end{array}right. Rightarrow left[begin{array}{l} left{begin{matrix} x_{1} = 2 y_{1} = 1 end{matrix}right. left{begin{matrix} x_{2} = -2 y_{2} = -1 end{matrix}right. end{array}right.)

Trong mặt phẳng tọa độ, ta gọi tập hợp các điểm có tọa độ thỏa mãn mọi bất phương trình trong hệ là miền nghiệm của hệ. Vậy miền nghiệm của hệ là giao các miền nghiệm của các bất phương trình trong hệ

Để xác định miền nghiệm của hệ, ta dùng phương pháp biểu diễn hình học như sau:

Với mỗi bất phương trình trong hệ, ta xác định miền nghiệm của nó và gạch bỏ miền còn lại.

Sau khi làm như trên lần lượt đối với tất cả các bất phương trình trong hệ trên cùng một mặt phẳng tọa độ, miền còn lại không bị gạch chính là miền nghiệm của hệ bất phương trình đã cho.

Vậy hệ phương trình có 4 cặp nghiệm.

Tác giả: Việt Phương