Top 12 # Cách Giải Bất Phương Trình Xem Nhiều Nhất, Mới Nhất 6/2023 # Top Trend | Maiphuongus.net

Giải Bất Phương Trình? Và Cách Giải Hệ Bất Phương Trình?

Ví dụ về bất phương trình:

2x + 3 ≥ -6

Vế trái của bất phương trình: 2x + 3

Vế phải của bất phương trình: -6

Bất phương trình có hai vế không bằng nhau, có thể lớn hơn hoặc nhỏ hơn. Nghiệm của bất phương trình không phải chỉ là một giá trị mà sẽ bao gồm cả một tập hợp giá trị thỏa mãn điều kiện của bất phương trình.

Có rất nhiều dạng bất phương trình khác nhau như : bất phương trình bậc một, bất phương trình bậc hai, bất phương trình vô tỷ, bất phương trình chứa căn, bất phương trình logarit. Mỗi dạng bài lại có một cách giải bất phương trình khác nhau, tùy theo đặc điểm của bất phương trình.

Nhưng bên trên mình đã ví dụ cho các bạn một cách dễ hiểu nhất về bất phương trình rồi. Các bạn có thể tham khảo.

2. Các dạng của bất phương trình:

* Bất phương trình tương đương

1. Định nghĩa: hai bất phương trình được gọi là tương đương nhau nếu chúng có cùng tập nghiệm.

* Hệ quả: Nếu chuyển một biểu thức từ vế này sang vế kia của phương trình và đổi dấu thì ta được một bất phương trình mới tương đương với phương trình đã cho.

+ Nếu h(x) xác định trên D và h(x)<0 với mọi thì bất phương trình:

* Chú ý: Khi giải bất phương trình cần lưu ý các vấn đề sau

+ Đặt điều kiện (nếu có) trước khi biến đổi bất phương trình.

+ Khi nhân (chia) hai vế bất phương trình với một biểu thức thì chú ý xem biểu thức đó âm hay dương, hoặc biểu thức đó mang cả hai giá trị âm và dương.

+ Khi qui đồng mẫu số của bất phương trình: nếu biết chắc chắn mẫu dương thì không đổi dấu.

* Ví dụ 1: Giải các bất phương trình sau

Định nghĩa: Nhị thức bậc nhất là biểu thức được biến đổi về dạng f(x) = ax+b ;

Định nghĩa: Tam thức bậc hai là biểu thức có dạng fleft( x right) = a{x^2} + bx + c;(a ne 0).

Phương pháp giải bất phương trình đại số 1 ấn Phương pháp 1: Lập bảng

Ví dụ 1: Lập bảng xét dấu f(x)

a) b)Giải

Dấu f(x)

Cách Giải Phương Trình Chứa Căn, Bất Phương Trình Chứa Căn

Phương trình chứa căn – Bất phương trình chứa căn

Các dạng phương trình chứa căn bậc hai, bất phương trình chứa căn thức bậc hai luôn là một dạng toán xuất hiện nhiều trong các kì thi học kì, thi tuyển sinh vào lớp 10, thi THPTQG.

Để giải được phương trình, bất phương trình chứa căn, các em học sinh cần nắm vững kiến thức sau:

1. Nguyên tắc chung để giải phương trình, bất phương trình chứa căn bậc 2

Nguyên tắc chung để khử dấu căn thức là bình phương 2 vế của một phương trình, bất phương trình. Tuy nhiên, để đảm bảo việc bình phương này cho chúng ta một phương trình, bất phương trình mới tương đương thì cần phải có điều kiện cả 2 vế pt, bpt đều không âm.

Do đó, về bản chất, chúng ta lần lượt kiểm tra 2 trường hợp âm, và không âm của các biểu thức (thường là 1 vế của phương trình, bất phương trình đã cho).

2. Các dạng phương trình chứa căn, bất phương trình chứa căn cơ bản

Có khoảng 4 dạng phương trình chứa căn, bất phương trình chứa căn cơ bản đó là

3. Cách giải phương trình chứa căn, cách giải bất phương trình chứa căn

Chi tiết về phương pháp giải các dạng phương trình, bất phương trình chứa căn, xin mời thầy cô và các em học sinh theo dõi trong video sau đây.

4. Một số ví dụ về phương trình và bất phương trình chứa căn thức

Ví dụ 1. Giải phương trình

$$sqrt {4 + 2x – {x^2}} = x – 2$$

Hướng dẫn. Phương trình đã cho tương đương với

[begin{array}{l} ,,,,,,,left{ begin{array}{l} x – 2 ge 0\ 4 + 2x – {x^2} = {(x – 2)^2} end{array} right.\ Leftrightarrow left{ begin{array}{l} x ge 2\ {x^2} – 3x = 0 end{array} right.\ Leftrightarrow left{ begin{array}{l} x ge 2\ x = 0, vee ,x = 3 end{array} right. \ Leftrightarrow x = 3 end{array}] Vậy phương trình đã cho có nghiệm duy nhất $x = 3$.

Ví dụ 2. Giải phương trình

[sqrt {25 – {x^2}} = x – 1]

Hướng dẫn. Phương trình đã cho tương đương với

[begin{array}{l} ,,,,,,,left{ begin{array}{l} x – 1 ge 0\ 25 – {x^2} = {(x – 1)^2} end{array} right.\ Leftrightarrow left{ begin{array}{l} x ge 1\ 2{x^2} – 2x – 24 = 0 end{array} right.\ Leftrightarrow left{ begin{array}{l} x ge 1\ x = 4, vee ,x = – 3 end{array} right. \ Leftrightarrow x = 4 end{array}] Vậy phương trình có nghiệm duy nhất $x=4$.

Ví dụ 3. Giải phương trình [sqrt {3{x^2} – 9x + 1} + 2 = x]

Hướng dẫn. Phương trình đã cho tương đương với

[begin{array}{l} ,,,,,,,,sqrt {3{x^2} – 9x + 1} = x – 2\ , Leftrightarrow left{ begin{array}{l} x – 2 ge 0\ 3{x^2} – 9x + 1 = {(x – 2)^2} end{array} right.\ Leftrightarrow left{ begin{array}{l} x ge 2\ 2{x^2} – 5x – 3 = 0 end{array} right.\ Leftrightarrow left{ begin{array}{l} x ge 2\ x = 3 vee ,x = – frac{1}{2} end{array} right. \ Leftrightarrow x = 3 end{array}] Vậy phương trình đã cho có nghiệm duy nhất $x = 3$.

Ví dụ 4. Giải phương trình $$sqrt {{x^2} – 3x + 2} = x – 1$$

Hướng dẫn. Phương trình đã cho tương đương với $$begin{array}{l} ,,,,,,,left{ begin{array}{l} x – 1 ge 0\ {x^2} – 3x + 2 = {left( {x – 1} right)^2} end{array} right.\ Leftrightarrow left{ begin{array}{l} x ge 1\ x = 1 end{array} right. \ Leftrightarrow x = 1 end{array}$$ Vậy phương trình đã cho có nghiệm duy nhất $x = 1$.

Ví dụ 5. Giải phương trình $$sqrt {{x^2} – 5x + 4} = sqrt { – 2{x^2} – 3x + 12} $$

Hướng dẫn. Phương trình đã cho tương đương với $$begin{array}{l} ,,,,,,,left{ begin{array}{l} {x^2} – 5x + 4 ge 0\ {x^2} – 5x + 4 = – 2{x^2} – 3x + 12 end{array} right.\ Leftrightarrow left{ begin{array}{l} left( {x – 1} right)left( {x – 4} right) ge 0\ 3{x^2} – 2x – 8 = 0 end{array} right. & \ Leftrightarrow left{ begin{array}{l} left[ begin{array}{l} x le 1\ x ge 4 end{array} right.\ left[ begin{array}{l} x = 2\ x = frac{{ – 8}}{6} end{array} right. end{array} right. Leftrightarrow x = frac{{ – 8}}{6} end{array}$$ Vậy phương trình đã cho có nghiệm duy nhất $x = frac{-8}{6}$.

Ví dụ 6. Giải bất phương trình $$x + 1 ge sqrt {2left( {{x^2} – 1} right)} $$

Hướng dẫn. Bất phương trình đã cho tương đương với $$begin{array}{l} ,,,,,,,left{ begin{array}{l} x + 1 ge 0\ {left( {x + 1} right)^2} ge 2left( {{x^2} – 1} right) ge 0 end{array} right.\ Leftrightarrow left{ begin{array}{l} x ge – 1\ {x^2} – 2x – 3 le 0\ {x^2} – 1 ge 0 end{array} right.\ Leftrightarrow left{ begin{array}{l} x ge – 1\ – 1 le x le 3\ left[ begin{array}{l} x le – 1\ x ge 1 end{array} right. end{array} right. Leftrightarrow left[ begin{array}{l} x = – 1\ 1 le x le 3 end{array} right. end{array}$$

Vậy tập nghiệm của bất phương trình là $S = left[ {1;3} right] cup left{ { – 1} right}$.

Ví dụ 7. Giải bất phương trình $$2x – 5 < sqrt { – {x^2} + 4x – 3} $$

Hướng dẫn. Phương trình đã cho tương đương với $$left[ begin{array}{l} left{ begin{array}{l} 2x – 5 < 0\ – {x^2} + 4x – 3 ge 0 end{array} right. &  left( 1 right)\ left{ begin{array}{l} 2x – 5 ge 0\ {left( {2x – 5} right)^2} < – {x^2} + 4x – 3 end{array} right. & left( 2 right) end{array} right.$$

Hệ bất phương trình (1) tương đương với $$left{ begin{array}{l} x < frac{5}{2}\ 1 le x le 3 end{array} right. Leftrightarrow 1 le x < frac{5}{2}$$

Hệ bất phương trình (2) tương đương với $$begin{array}{l} ,,,,,,,left{ begin{array}{l} x ge frac{5}{2}\ 5{x^2} – 24x + 28 < 0 end{array} right.\ Leftrightarrow left{ begin{array}{l} x ge frac{5}{2}\ 2 < x < frac{{14}}{5} end{array} right. Leftrightarrow frac{5}{2} le x < frac{{14}}{4} end{array}$$

Lấy hợp tập nghiệm của 2 trường hợp trên, được đáp số cuối cùng là $S = left[ {1;frac{{14}}{5}} right)$.

Ví dụ 8. Giải phương trình $$sqrt {x + 4} – sqrt {1 – x} = sqrt {1 – 2x} $$

Hướng dẫn. Phương trình đã cho tương đương với

$$begin{array}{l} ,,,,,,,sqrt {x + 4} = sqrt {1 – 2x} + sqrt {1 – x} \ Leftrightarrow left{ begin{array}{l} – 4 le x le frac{1}{2}\ x + 4 = 1 – x + 2sqrt {(1 – x)(1 – 2x)} + 1 – 2x end{array} right.\ Leftrightarrow left{ begin{array}{l} – 4 le x le frac{1}{2}\ sqrt {(1 – x)(1 – 2x)} = 2x + 1 end{array} right.\ Leftrightarrow left{ begin{array}{l} – 4 le x le frac{1}{2}\ x ge – frac{1}{2}\ (1 – x)(1 – 2x) = 4{x^2} + 4x + 1 end{array} right.\ Leftrightarrow left{ begin{array}{l} – frac{1}{2} le x le frac{1}{2}\ x = 0 vee x = – frac{7}{2} end{array} right. Leftrightarrow x = 0 end{array}$$ Vậy phương trình đã cho có nghiệm duy nhất $x = 0$.

Ví dụ 9. Giải phương trình $$sqrt {3x + 1} – sqrt {2x – 1} = sqrt {6 – x} $$

Hướng dẫn. Điều kiện $left{ begin{align}  & 3x+1ge 0 \ & 2x-1ge 0 \ & 6-xge 0 \ end{align} right.Leftrightarrow left{ frac{1}{2}le xle 6 right.$

Với điều kiện đó, phương trình đã cho tương đương với $$begin{array}{l} ,,,,,,,sqrt {3x + 1} – sqrt {2x – 1} = sqrt {6 – x} \ Leftrightarrow ,,,sqrt {3x + 1} = sqrt {6 – x} + sqrt {2x – 1} \ Leftrightarrow ,,,3x + 1 = 6 – x + 2x – 1 + 2sqrt {6 – x} sqrt {2x – 1} \ Leftrightarrow ,,,2x – 4 = 2sqrt {6 – x} sqrt {2x – 1} \ Leftrightarrow ,,x – 2 = sqrt {6 – x} sqrt {2x – 1} \ Leftrightarrow ,,{x^2} – 4x + 4 = – 2{x^2} + 13x – 6,,,(x ge 2)\ Leftrightarrow ,,3{x^2} – 17x + 10 = 0\ Leftrightarrow left[ begin{array}{l} x = 5\ x = frac{2}{3}left( l right) end{array} right. end{array}.$$ Vậy phương trình đã cho có nghiệm $x=5$.

Ví dụ 10. Giải bất phương trình $$2sqrt{x-3}-frac{1}{2}sqrt{9-2x}ge frac{3}{2}$$

Hướng dẫn. Điều kiện $left{ begin{align}  & x-3ge 0 \ & 9-2xle 0 \ end{align} right.Leftrightarrow 3le xle frac{9}{2}$

Với điều kiện trên, bất phương trình đã cho tương đương với [begin{array}{l} ,,,,,,,2sqrt {x – 3} ge frac{1}{2}sqrt {9 – 2x} + frac{3}{2}\ Leftrightarrow 4left( {x – 3} right) ge frac{1}{4}left( {9 – 2x} right) + frac{9}{4} + frac{3}{2}sqrt {9 – 2x} \ Leftrightarrow 16x – 48 ge 18 – 2x + 6sqrt {9 – 2x} \ Leftrightarrow 9x – 33 ge 3sqrt {9 – 2x} \ Leftrightarrow left{ begin{array}{l} 18x – 64 ge 0\ {left( {9x – 33} right)^2} ge 9left( {9 – 2x} right) end{array} right.\ Leftrightarrow left{ begin{array}{l} x ge frac{{32}}{9}\ 81{x^2} – 576x + 1008 ge 0 end{array} right.\ Leftrightarrow left{ begin{array}{l} x ge frac{{32}}{9}\ left[ begin{array}{l} x le frac{{28}}{9}\ x ge 4 end{array} right. end{array} right. Leftrightarrow x ge 4 end{array}]

Kết hợp với điều kiện ta có tập nghiệm của bất phương trình là $S=left[ 4;,frac{9}{2} right]$.

Giải Phương Trình, Bất Pt Bậc Cao

Trong chương trình Đại số, phương trình và bất phương trình là một nội dung quan trọng, phổ biến trên nhiều dạng toán xuyên suốt các cấp học, cũng là bộ phận thường thấy trong các kỳ thi kiểm tra chất lượng học kỳ, thi tuyển sinh lớp 10 THPT, thi học sinh giỏi môn Toán các cấp và kỳ thi tuyển sinh Đại học – Cao đẳng với hình thức hết sức phong phú, đa dạng. Mặc dù đây là một đề tài quen thuộc, chính thống nhưng không vì thế mà giảm đi phần thú vị, nhiều bài toán cơ bản tăng dần đến mức khó thậm chí rất khó, với các biến đổi đẹp kết hợp nhiều kiến thức, kỹ năng vẫn làm khó nhiều bạn học sinh THCS, THPT.

Vì thế về tinh thần, nó vẫn được đông đảo các bạn học sinh, các thầy cô giáo và các chuyên gia Toán phổ thông quan tâm sâu sắc. Sự đa dạng về hình thức của lớp bài toán căn này đặt ra yêu cầu cấp thiết là làm thế nào để đơn giản hóa, thực tế các phương pháp giải, kỹ năng, mẹo mực đã hình thành, đi vào hệ thống. Về cơ bản để làm việc với lớp phương trình, bất phương trình này chúng ta ưu tiên hạ hoặc giảm bậc của bài toán gốc, cố gắng đưa về các dạng bậc hai, bậc nhất hoặc các dạng đặc thù (đã được khái quát trước đó). Trong chuyên đề này, chuyên đề đầu tiên của lớp phương trình, bất phương trình, hệ phương trình tác giả chủ yếu đề cập tới các bài toán từ mức độ đơn giản nhất tới phức tạp nhất, dành cho các bạn học sinh bước đầu làm quen, tuy nhiên vẫn đòi hỏi tư duy logic, tỉ mỉ và chính xác. Tài liệu nhỏ được viết theo trình tự kiến thức tăng dần, không đề cập giải phương trình bậc hai, đi sâu giải phương trình bậc ba (dạng đặc biệt với nghiệm hữu tỷ và phân tích hằng đẳng thức), dạng toán trùng phương (bậc 4) và mở rộng với bậc chẵn, các phép đặt ẩn phụ cơ bản và phép đặt hai ẩn phụ quy về đồng bậc, phạm vi kiến thức phù hợp với các bạn học sinh THCS (lớp 8, lớp 9) ôn thi vào lớp 10 THPT, các bạn học sinh THPT thi học sinh giỏi Toán các cấp và luyện thi vào hệ đại học, cao đẳng, cao hơn là tài liệu tham khảo dành cho các thầy cô giáo và các bạn yêu Toán khác.

Chuyên Đề Phương Trình Bất Phương Trình

( Thầy giáo hướng dẫn: Đỗ Thanh Diễn. ( Nhóm thực hiện: Nhóm chuyên Toán lớp 10A1 nnnnnnnnnnnnnn n 1. Tạ Quang Hải 2. Trần Quốc Trung 3. Trần Thị Kiều Diễm 4. Phạm Thị Minh Thảo 5. Nguyễn Thị Hoàng Tú

Kon Tum, ngày 22 tháng 11 năm 2011

A/ LỜI NÓI ĐẦU.

B/ CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH CHỨA ẨN TRONG DẤU CĂN.

I/ PHƯƠNG PHÁP LUỸ THỪA

Các ví dụ:Ví dụ 1: Giải phương trình: Giải:Điều kiện xác định: Phương trình đã cho tương đương:

Vậy nghiệm của phương trình là: .

Ví dụ 2: Giải phương trình: (*)Giải:Điều kiện xác định: Với x = 0, rõ ràng x = 0 là một nghiệm của phương trình (*).Với phương trình (*) tương đương:

Vì nên ta nhận giá trị .Với phương trình (*) tương đương:

(**)Mà ta đang xét nên hệ (**) vô nghiệm.Vậy nghiệm của phương trình là: và .Ví dụ 3: Giải phương trình: (1)Giải:Điều kiện: ( Với điều kiện trên, phương trình (1) trở thành:

Vậy phương trình có tập nghiệm S =

Ví dụ 4: Gải bất phương trình: Giải: Bất phương trình đã cho tương đương: (1a) hoặc (1b)Ta có: (1a) (1b) Vậy tập nghiệm của bất phương trình là: .

Ví dụ 5: Giải bất phương trình: (1)Giải:(1) Trường hợp 1 :

Trường hợp 2 :

Vậy tập nghiệm của bất phương trình là: S =

Ví dụ 7: Giải bất phương trình sau: (1)Giải:Điều kiện xác định: (1)

(1′)Nhận xét: x = 1 không là nghiệm của bất phương trình (1′) nên:(1′)

Vậy tập nghiệm của bất phương trình là: .

Ví dụ 8: Giải bất phương trình sau: (1) Giải: – Xét . Khi đó: và (1)

Kết hợp với suy ra .Xét . Khi đó (1) tương đương:

Kết hợp với suy ra tập nghiệm của bất phương trình là:

II/ PHƯƠNG PHÁP ĐẶT ẨN PHỤ.

1.Đặt ẩn phụ đưa về phương trình bậc hai, bậc ba…

a) Các ví dụ:Ví dụ 1: Gải phương trình: (1)Giải:Điều kiện xác định: Phương trình (1) tương đương:

Đặt ( )Phương trình trở thành:

( Vì )Với , ta có: = 1 ( thỏa mãn điều kiện xác định) Vậy phương trình đã cho có nghiệm duy nhất .]

Ví dụ 2: Gải phương trình: Giải: Điều kiện xác