Top #10 Cách Giải Bất Phương Trình Trên Máy Tính Fx 580Vnx Xem Nhiều Nhất, Mới Nhất 8/2022 # Top Trend | Maiphuongus.net

Máy Tính Casio Fx 580Vnx

--- Bài mới hơn ---

  • Máy Tính Casio Fx 580 Vnx
  • Giải Bài Tập Sbt Toán 8 Bài 2: Phương Trình Bậc Nhất Một Ẩn Và Cách Giải
  • ✅ Phương Trình Bậc Nhất Một Ẩn Và Cách Giải
  • Sách Giải Bài Tập Toán Lớp 8 Bài 2: Phương Trình Bậc Nhất Một Ẩn Và Cách Giải
  • Chuyên Đề Hệ Phương Trình Bậc Nhất Hai Ẩn Số
  • Máy tính CASIO FX 580VNX thuộc dòng máy tính khoa học ClassWiz của hãng máy tính CASIO. Máy được trang bị màn hình LCD có độ phân giải cao. CASIO FX 580VNX là bước tiến đột phá, mang công nghệ đến gần hơn với lớp học. Đây là chiếc máy tính khoa học có hiệu suất cao, tốc độ tính toán nhanh; phù hợp với nhiều cấp học từ học sinh, sinh viên, đặc biệt là sinh viên ngành kỹ thuật.

    THÔNG SỐ KỸ THUẬT CỦA MÁY TÍNH CASIO FX 580VNX

    • Thương hiệu: CASIO
    • Model: FX – 580 VNX
    • Màu: đen
    • Loại: Máy tính
    • Chức năng: 552
    • Hiển thị: Hiển thị tương tự sách giáo khoa
    • Trọng lượng: 145 gr

    MÁY TÍNH CASIO FX 580VNX SỞ HỮU MÀN HÌNH LCD ĐỘ PHÂN GIẢI CAO

    Máy tính CASIO FX 580VNX là sản phẩm thuộc dòng máy ClassWiz sở hữu màn hình có độ phân giải cao vượt trội, giúp người dùng có thể dễ dàng xem các công thức và biểu tượng toán học một cách đơn giản. Độ phân giải của màn hình của FX 580VNX được tăng gấp 4 lần, hỗ trợ tăng lượng thông tin hiển thị cũng như cải thiện tính tiện dụng của sản phẩm. Máy có thể hiển thị số lượng ký tự gấp 2 lần ở kích thước bình thường và 6 lần ở kích thước nhỏ trên màn hình so với những dòng máy ES Plus trước đó.

    Độ phân giải của dòng ClassWiz cao hơn ES Plus

    Màn hình LCD độ phân giải cao giúp người dùng có thể dễ dàng nhìn thấy các hiển thị trên màn hình trong mọi điều kiện ánh sáng, kể cả trong phòng tối hoặc ngoài trời nắng. Màn hình LCD tốn ít dung lượng pin và ít ảnh hưởng đến sức khỏe của người dùng, tối ưu cho góc xem thẳng phía trên. Ngoài ra, màn hình cũng tạo được hiệu ứng mờ, hạn chế tình trạng mỏi mắt khi sử dụng.

    CASIO FX 580VNX có thể nhập bảng tính 5 cột và 45 hàng

    Đặc biệt hơn, các sản phẩm máy tính thuộc dòng ClassWiz còn được trang bị chức năng bảng tính cơ bản, có thể thao tác được bảng tính có diện tích lên tới 5 cột và 45 hàng, chứa được tối đa 170 mục dữ liệu. Chức năng bảng tính này chỉ trang bị ở FX 580VNX và FX 991 EX mà thôi. Sở hữu một chiếc máy FX 580VNX trong tay, bạn sẽ không còn phải lo lắng vấn đề nhập dữ liệu quá dài hoặc khó đọc dữ liệu như những dòng máy trước đó. Điều này tạo được tâm lý thoải mái cho người dùng, tăng hiệu quả tính toán đồng thời mang đến kết quả tốt hơn khi sử dụng, đặc biệt là trong các kỳ thi.

    MÁY TÍNH CASIO FX 580VNX THÂN THIỆN VỚI NGƯỜI DÙNG

    Chiếc máy tính CASIO FX 580VNX rất thân thiện, dễ sử dụng; người dùng có thể tận dụng đầy đủ các tính năng hiển thị với giao diện dễ dùng cùng thiết kế kiểu dáng hiện đại, tiên tiến.

    Giao diện máy tính CASIO FX 580VNX dễ hiểu

    Một trong những cải tiến dễ thấy ở chiếc máy tính CASIO FX 580VNX là màn hình LCD có độ phân giải cao với giao diện máy dễ sử dụng. Tất cả các ký hiểu, biểu tượng sẽ được hiển thị rõ ràng trên màn hình máy tính. Bằng việc sử dụng biểu tượng trên màn hình menu, người dùng có thể dễ dàng lựa chọn những chức năng mình mong muốn một cách nhanh chóng. Điều này giúp cải thiện khả năng hiển thị của sản phẩm. Đồng thời, việc tính toán và lựa chọn công thức hoặc chế độ cũng nhanh hơn so với những dòng máy khác.

    Ngoài ra, hầu các từ tiếng Anh xuất hiện trên màn hình chiếc máy FX 580VNX đều ở dạng đầy đủ chứ không viết tắt nên rất dễ hiểu, giúp nâng cao khả năng ngoại ngữ khi sử dụng máy. Màn hình menu cũng tương tác hỗ trợ nhiều các thao tác trực quan hơn những dòng máy trước.

    Giao diện dễ hiểu của CASIO FX 580VNX

    Mục tiêu từ trước đến nay của nhà sản xuất CASIO là mang công thức toán học, các ký hiệu trên máy tính có cách hiển thị gần hơn với sách giao khoa, tạo được hiệu quả trực quan, dễ ứng dụng thực tế và nâng cao khả năng học tập. Điều này được thể hiện rõ nét thông qua dòng sản phẩm ClassWiz, cụ thể là chiếc máy tính FX 580VNX. Việc nhập và hiển thị các phân số, căn bậc hai, căn, lũy thừa và các biểu tượng toán học khác có định dạng giống hệt với sách giáo khoa nên rất dễ hiểu. Đây cũng là một cải tiến hoàn toàn mới của dòng máy ClassWiz so với dòng MS.

    Kiểu dáng máy tính CASIO FX 580VNX mang lại cảm giác thoải mái khi sử dụng

    Thân máy FX 580VNX được thiết kế mới hoàn toàn, nổi bật với kiểu dáng thông minh, họa tiết trang nhã đi kèm với vỏ trượt cứng đặc trưng của CASIO. Lớp bề mặt máy FX 580VNX đã trải qua quy trình xử lý đặc biệt, khác với các dòng sản phẩm khác tạo nên vẻ đẹp thu hút, bắt mắt nhưng thanh lịch. Người dùng có thể dễ dàng nhìn thấy các họa tiết hình học tuy đơn giản nhưng cuốn hút ở trên bề mặt máy. Những họa tiết này tạo nên vẻ đẹp riêng có của chiếc máy FX 580VNX.

    Bàn phím có kiểu dáng sành điệu kết hợp với chất liệu kim loại vừa tạo cảm giác sang trọng, vừa tăng độ bền cho sản phẩm. Bàn phím kết hợp kim loại chỉ xuất hiện ở 2 sản phẩm là CASIO FX 580VNX và CASIO FX 991EX mà thôi. Hàng phím đầu tiên của máy được làm bằng chất liệu kim loại nên có thể dễ dàng gây ấn tượng với người dùng từ cái nhìn đầu tiên. Các phím còn lại được làm bằng plastic cực nhạy và nảy, hỗ trợ quá trình nhập liệu của người dùng nhanh hơn. Các phím chức năng được mã hóa màu, dễ dàng phân biệt với những phím khác tạo sự thuận tiện khi thao tác phím. Cách bố trí khá giống với những dòng máy trước đó nên người dùng có thể dễ dàng làm quen và thao tác chứ không mất nhiều thời gian tìm hiểu. Các phím chức năng có màu vàng, đỏ và xanh nổi bật trên nền đen của bề mặt máy nên rất dễ nhìn.

    CASIO FX 580VNX có kiểu dáng hiện đại, họa tiết trang nhã

    Tương tự với định dạng màn hình đã đề cập ở trên, các ký hiệu phím của FX 580VNX sử dụng các ký hiệu và biểu tượng tương tự như trong sách giáo khoa toán. Nhờ vậy, bề mặt hình in của bàn phím có vẻ tự nhiên giúp việc nhập dữ liệu nhanh và dễ dàng hơn. Chữ in sắc nét, kể cả những ký tự nhỏ vẫn có thể nhìn rõ từng chi tiết. Cách thiết kế này hỗ trợ tối đa cho người dùng, giảm thời gian thao tác xuống mức tối thiểu. Không những vậy, các dòng máy tính CASIO áp dụng công nghệ in đặc biệt nên bàn phím sẽ càng bóng, đẹp khi sử dụng, lâu bị mờ như những chiếc máy thông thường khác.

    Thân của FX 580VNX khá mỏng, cạnh máy được vát cong nhẹ nhàng vừa mang phong cách thanh lịch vừa giúp người dùng có thể cầm máy vừa vặn trong lòng bàn tay. Với thiết kế vừa vặn, độ bền chắc cao nhờ công nghệ Nhật Bản, máy tính CASIO FX 580VNX là sản phẩm không thể bỏ lỡ.

    MÁY TÍNH CASIO FX 580VNX LÀ TRỢ THỦ ĐẮC LỰC TRONG VIỆC HỌC TẬP

    Sản phẩm máy tính CASIO FX 580 VNX sở hữu một bộ xử lý hiệu suất cao và dung lượng bộ nhớ lớn gấp 2 lần các dòng máy trước đảm bảo tốc độ hoạt động nhanh và khả năng tính toán vượt trội. Trong những dòng máy tính được phép sử dụng trong trường học thì FX 580VNX là chiếc máy tính dẫn đầu với số lượng tính năng lên tới 552 tính năng. Máy đã bổ sung thêm nhiều chức năng tính toán cực hay mà những chiếc máy tính CASIO trước đây chưa có.

    Máy tính CASIO FX 580VNX hiệu suất cao, giảm thời gian tính toán xuống mức tối thiểu

    Chiếc máy tính FX 580VNX sở hữu màn hình độ phân giải cao, cụ thể là 192 x 63 điểm nên có khả năng hiển thị rõ ràng các hệ phương trình và nội dung. Đi kèm với ưu điểm đó là khả năng tính toán tốc độ cao, tiện dụng khi sử dụng trong lớp học và đặc biệt hữu ích trong các kỳ kiểm tra. Với chiếc máy tính CASIO FX 580VNX, bạn có thể tiết kiệm được rất nhiều thời gian giải toán nhờ việc bỏ qua những bước tính tay dễ xảy ra sai sót như tính tích, tổng, bảng số 2 hàm…Tất cả các thao tác đó có thể thực hiện dễ dàng trên chiếc máy FX 580VNX, giúp thời gian làm bài có thể rút ngắn được gấp đôi, gấp ba hoặc thậm chí hơn tùy theo từng dạng toán.

    Máy tính CASIO FX 580VNX có dung lượng bộ nhớ lớn, công suất xử lý đến 160 mục dữ liệu thống kê. Đây là một con số ấn tượng mà không phải chiếc máy tính khoa học cầm tay nào cũng có thể làm được. Ngoài ra, chiếc FX 580 VNX nói riêng và dòng máy ClassWiz nói chung sở hữu chức năng hiệu suất cao với 2 tính năng nổi trội là sử dụng bảng tính và phép tính ma trận 4 x 4. Đây là chức năng cải tiến mới, mang lại nhiều lợi ích vượt trội và chỉ xuất hiện tại dòng ClassWiz mà thôi.

    CASIO FX 580 VNX là trợ thủ đắc lực cho người dùng

    Chức năng hiển thị danh sách giúp việc học nhanh hơn và hoàn chỉnh hơn. Tất cả các kết quả tính toán hàm và biến lưu trong bộ nhớ đều có thể hiển thị trong danh sách. Do đó, người dùng không cần phải gọi lại và xác nhận từng giá trị như các mẫu máy trước đây. Đây là một tính năng hữu dụng, giúp rút gọn thời gian, giảm thiểu các thao tác bấm nút phức tạp và người dùng không phải nhớ quá nhiều giá trị trong khi làm toán. Chiếc CASIO FX 580VNX sở hữu năng lực điện toán cao có thể hỗ trợ tất cả các hoạt động toán cao cấp bao gồm tính bảng tính, tính ma trận 4 x 4, tính phương trình với bốn ẩn số và phương trình bậc hai cũng như khả năng tính phân phối thống kê nâng cao.

    Máy tính CASIO FX 580VNX có thể hỗ trợ giải toán cao cấp

    Máy tính CASIO FX 580VNX là bước đột phá mới về tính năng của dòng sản phẩm máy tính khoa học. Ngoài việc bổ sung thêm nhiều tính năng mới so với những chiếc máy tính cầm tay được ưa chuộng trước đây, máy tính FX 580VNX được đánh giá cao vì có khả năng giải được rất nhiều dạng toán thuộc tất cả các cấp học. Máy FX 580 VNX được trang bị một bộ hàn chỉnh các tính năng nâng cao. Tính năng này chỉ xuất hiện trong các dòng máy tính khoa học của CASIO, bao gồm cả FX 580VNX. Có thể điểm qua một số tính năng nâng cao của chiếc FX 580VNX như sau:

    Thứ nhất, máy tính CASIO FX 580VNX được trang bị chức năng tính bảng tính. Đây là chức năng rất hữu ích cho việc học thống kê, một phần quan trọng trong môn học toán cao cấp. Ngoài ra, chức năng bảng tính cũng cung cấp thêm khả năng nhập công thức đệ quy, áp dụng giả thuyết Riemann tính toán cao cấp. Chức năng bảng tính có thể ứng dụng với các số liệu thực tế dễ dàng hơn, tạo điều kiện cho học sinh, sinh viên sử lý các thống kê một cách đơn giản.

    Thứ hai, máy tính CASIO FX 580 VNX sở hữu chức năng tính toán phân bổ thống kê chi tiết. Chiếc FX 580VNX có thể thực hiện các loại phép tính phân phối khác nhau như:

    • Xác suất nhị thức
    • Phân phối tích lũy nhị thức
    • Mật độ xác suất bình thường
    • Phân phối tích lũy chuẩn
    • Phân phối tích lũy chuẩn nghịch đảo
    • Xác suất Poisson
    • Phân phối tích lũy Poisson

    Đây là danh sách những tính năng tính toán phân bổ thống kê chi tiết không phải chiếc máy tính nào cũng có. Bên cạnh đó, màn hình có độ phân giải cao, nhập dữ liệu dạng bảng tính sẽ cũng hỗ trợ các thao tác nhập dữ liệu nhanh hơn, chính xác hơn và dễ nhìn hơn. Các ký tự trên chiếc máy FX 580VNX tương tự với sách giáo khoa nên người dùng có thể dễ dàng làm quen, không phải nhìn vào sách hướng dẫn thường xuyên gây cảm giác khó chịu, nhanh nản và mất thời gian như những dòng máy khác.

    Thứ ba, chiếc máy FX 580 VNX sở hữu chức năng tính ma trận. Máy tính CASIO FX 580VNX có thể thực hiện tính toán với phép tính ma trận lên tới 4 hàng và 4 cột. Thường thì những chiếc máy tính trước đây là CASIO chỉ có thể giải được ma trận cấp 3 tương ứng 3 dòng và 3 cột mà thôi, còn cấp 4 thì người dùng buộc phải tính tay. Tuy nhiên, với bước cải tiến này thì việc tính ma trận bậc 4 có thể thực hiện một cách đơn giản với một chiếc máy tính. Còn gì tuyệt vời hơn khi chức năng này vừa giảm thời gian tính toán vừa tăng độ chính xác trong quá trình làm bài.

    CASIO FX 580VNX có thể giải nhiều dạng toán cao cấp

    Một số chức năng tính toán mới được nâng cấp xuất hiện trên FX 580VNX là giải phương trình tuyến tính có chứ từ 2 đến 4 ẩn số, giải bất đẳng thức bậc 2 cho đến bậc 4…Cũng giống như chức năng giải toán ma trận, FX 580VNX đã được nâng cấp lên thành giải bất đẳng thức bậc 4 thay vì bậc ba, phương trình tuyến tính 4 ẩn thay vì 3 ẩn giống như những dòng máy trước. Nhờ tính năng này, người dùng có thể dễ dàng kiểm tra nghiệm phương trình, bất phương trình…mà không còn phải lo lắng về những sai sót khi làm bài, đặc biệt hữu ích trong các bài kiểm tra và thi trắc nghiệm.

    Ngoài ra, chiếc máy tính CASIO FX 580VNX còn được tích hợp thêm tính năng tính tỷ lệ RATIO chính xác và tiện dụng. Nếu trước đây bạn phải tính tay các dạng toán, hóa có mức độ khó khá cao như tính tỉ số, số mol, tam suất gây mất thời gian, dễ dẫn đến sai số trong quá trình tính toán thì nay đã được CASIO FX 580VNX hỗ trợ tuyệt đối. Quả thực, CASIO FX 580VNX sở hữu quá nhiều tính năng tuyệt vời.

    VỚI CHIẾC MÁY TÍNH CASIO FX 580VNX, BẠN CÓ THỂ SỬ DỤNG DỊCH VỤ TRỰC QUAN HÓA TRỰC TUYẾN THÔNG QUA MÃ QR

    Mã QR là một mã ma trận hay còn gọi là mã vạch 2 chiều được phát triển bởi công ty Denso Wave, Nhật Bản vào năm 1994. Đây là một nhãn hiệu đã được đăng ký bởi Denso Wave tại Nhật Bản và một số quốc gia khác. QR là từ viết tắt của ‘Quick Response’, người dùng tạo ra nó có ý định cho phép mã được giải mã ở tốc độ cao. Chiếc máy tính CASIO FX 580VNX đã được nhà sản xuất tích hợp thêm tính năng chuyển đổi dữ liệu thành mã QR tiên tiến, hiện đại nhằm mục đích cung cấp hiệu ứng trực quan sinh động trong quá trình sử dụng.

    CASIO FX 580VNX hỗ trợ tính năng trực quan hóa thông qua mã QR

    Cách hiển thị hình ảnh đồ thị trực quan giúp công thức toán học dễ hiểu hơn

    • Bước 1: nhập công thức đầu vào
    • Bước 2: tạo bảng
    • Bước 3: nhập mã QR
    • Bước 4: Hiển thị đồ thị

    Nhập công thức dễ dàng tạo điều kiện làm báo cáo được thuận lợi và hiệu quả hơn

    • Bước 1: nhập công thức đầu vào
    • Bước 2: kết quả tính toán
    • Bước 3: nhập mã QR
    • Bước 4: công thức hiển thị

    Hiển thị hướng dẫn sử dụng một cách nhanh chóng giúp người dùng dễ nắm bắt được cách điều khiển và hoạt động của máy tính

    • Bước 1: hiển thị menu
    • Bước 2: nhập mã QR
    • Bước 3: hiển thị hướng dẫn

    Và còn rất nhiều ứng dụng QR khác đang chờ bạn khám phá ở chiếc máy tính CASIO FX 580VNX.

    • Các phép tính bảng tính: Hữu ích cho việc học thống kê. Lên tới 5 cột x 45 hàng (chứa được tối đa 170 dữ liệu).
    • Các phép tính ma trận: Thực hiện tính toán với ma trận lên tới 4 hàng và 4 cột.
    • Các phép tính vector: Thực hiện tính toán sử dụng lên tới 4 vec tơ bậc ba lưu trữ trong bộ nhớ máy.
    • Hiển thị nhiều hàng: Công thức tính toán được tự động xuống hàng thành nhiều hàng ở chế độ nhập tuyến tính.
    • Các phép tính tích phân: Thực hiện các phép tính tích phân trong toán cao cấp.
    • Các phép tính vi phân: Thực hiện các phép tính vi phân trong toán cao cấp.
    • Các phép tính phương trình: Tính hệ phương trình có từ 2 đến 4 ẩn số và phương trình bậc cao từ bậc 2 đến bậc 4.
    • Các phép tính bất đẳng thức: Giải bất đẳng thức từ bậc 2 đến bậc 4.
    • Các phép tính phân phối thống kê nâng cao: Thực hiện các phép tính bao gồm phân phối chuẩn, phân phối nhị thức và phân phối Poisson.
    • Cách phép tính tỷ lệ: Thực hiện các phép tính tỷ lệ như A:B=X:D
    • Các phép chuyển đổi hệ Mét: Lựa chọn các đơn vị Danh sách lệnh chuyển đổi theo hệ Mét.
    • Các hằng số khoa học: Lựa chọn các hằng số khoa học từ Bảng Hằng số Khoa học.
    • Danh sách các biến: Màn hình danh sách một chạm.
    • Danh sách thống kê: Hiển thị 6 hàng liền một lúc.
    • Dấu phân tách số: Cứ 3 số lại có một dấu phân tách, tạo điều kiện đọc các số lớn dễ dàng hơn.
    • Các ký hiệu kỹ thuật: Thực hiện tính toán kỹ thuật bao gồm các ký hiệu như k, M, m và n.
    • 10+2 chữ số: màn hình hiển thị 10 chữ số ở dãy số chính và 2 chữ số ở phần mũ.
    • Màn hình hiển thị ma trận điểm: Màn hình có độ phân giải cao nên cho phép hiển thị các ký tự một cách sắc nét.
    • Phát lại nhiều lần: Người dùng có thể nhanh chóng và dễ dàng truy xuất các biểu thức đã thực hiện trước đó để tiến hành các thao tác chỉnh sửa và thực hiện lại.
    • Các phím dẻo có kết hợp kim loại được thiết kế và chế tạo giúp dễ dàng thao tác.
    • Trình chỉnh sửa dữ liệu STAT dựa theo danh sách: người dùng có thể xem và chỉnh sửa dữ liệu nhập ở định dạng danh sách, hiện thị các nhóm dữ liệu như dữ liệu x, dữ liệu y, tần suất và dữ liệu làm tròn.
    • Hiển thị như trong sách giáo khoa: hiển thị các biểu thức giống như trong sách giáo khoa.

    LỜI KHUYÊN ĐỂ MUA MÁY TÍNH CASIO FX 580VNX THẬT

    Máy tính CASIO là một trong những dòng máy tính cầm tay được sử dụng nhiều nhất trong học tập và làm việc. Do vậy, thất dễ hiểu khi máy tính CASIO bị làm giả, làm nhái rất nhiều trên thị trường. Để tránh tình trạng mua nhầm một chiếc máy tính CASIO FX 580VNX giả, bạn cần nắm được một số thông tin sau trước khi mua máy:

    Thứ nhất, nhận biết tem chống giả được dán ở máy. Nếu trước đây tem máy tính Casio có màu vàng, rất dễ làm giả thì đến năm 2022, công ty CASIO Nhật Bản đã phối hợp với BITEX đổi sang một loại tem mới. Loại tem này được sản xuất theo công nghệ Đức với 3 đặc điểm nổi bật như sau:

    • Tương phản màu sắc chìm
    • Hiệu ứng logo nổi 3D
    • Soi đèn laser thì hiện lên chữ OK

    Cách phân biệt tem chống giả thật và giả (Nguồn: Bitex)

    Thứ hai, lưu ý kỹ nhãn mác, phiếu bảo hành máy. Khi mua máy, khách hàng cần quan sát kỹ bao bì, nhãn mác sản phẩm để phát hiện được hàng giả, hàng nhái. Những sản phẩm có tên thương hiệu gần giống với sản phẩm chính hãng CASIO hoặc chỉ thay đổi một vài chi tiết trên thương hiệu là sản phẩm nhái, không đảm bảo chất lượng. Ngoài ra, bạn cần kiểm tra xem số seri trên thân sau máy có khớp với số seri in trên phiếu bảo hành hay không. Mỗi máy tính CASIO chính hãng đều sở hữu một số seri riêng, trong khi máy tính giả thì có thể sử dụng 1 số seri cho nhiều máy.

    Thứ ba, không mua những model mà nhà sản xuất không cung cấp. Để hạn chế tình trạng làm giả, làm nhái thì CASIO thường xuyên đưa ra những cập nhật mới theo năm với những cải tiến nhỏ về công nghệ, tính năng cũng như số hiệu máy. Khách hàng nên chọn những mẫu máy mới thông qua việc tìm hiểu website, catalogue của nhà cung cấp chính hãng. Lưu ý: bạn cần nhớ ký hiệu model cần mua và không mua bất cứ model nào khác nếu không biết rõ. Ngoài ra, có một số model CASIO không sản xuất và cung cấp tại thị trường Việt Nam như M, DT, CA…Bạn cần nắm được thông tin này để sở hữu một chiếc máy tính CASIO chính hãng, chất lượng đảm bảo.

    Thứ tư, chỉ mua máy tính CASIO tại những cơ sở có uy tín, đại lý phân phối chính hãng để tránh tình trạng mua phải những chiếc máy kém chất lượng.

    --- Bài cũ hơn ---

  • Giáo Án Toán Học Lớp 8 (Chuẩn Kiến Thức)
  • Lý Thuyết Phương Trình Bậc Nhất Một Ẩn Và Cách Giải Toán 8
  • Toán 8 Bài 2: Phương Trình Bậc Nhất Một Ẩn Và Cách Giải
  • Giải Phương Trình Bậc 2 Trong Java
  • Bài Toán Phương Trình Bậc Nhất Trong Java
  • Máy Tính Casio Fx 580 Vnx

    --- Bài mới hơn ---

  • Giải Bài Tập Sbt Toán 8 Bài 2: Phương Trình Bậc Nhất Một Ẩn Và Cách Giải
  • ✅ Phương Trình Bậc Nhất Một Ẩn Và Cách Giải
  • Sách Giải Bài Tập Toán Lớp 8 Bài 2: Phương Trình Bậc Nhất Một Ẩn Và Cách Giải
  • Chuyên Đề Hệ Phương Trình Bậc Nhất Hai Ẩn Số
  • Cách Giải Hệ Phương Trình Bậc Nhất Hai Ẩn Chứa Tham Số Cực Hay
  • Máy tính CASIO FX 580VNX thuộc dòng máy tính khoa học ClassWiz của hãng máy tính CASIO. Máy được trang bị màn hình LCD có độ phân giải cao. CASIO FX 580VNX là bước tiến đột phá, mang công nghệ đến gần hơn với lớp học. Đây là chiếc máy tính khoa học có hiệu suất cao, tốc độ tính toán nhanh; phù hợp với nhiều cấp học từ học sinh, sinh viên, đặc biệt là sinh viên ngành kỹ thuật.

    Máy tính khoa học CASIO FX 580VNX có nhiều cải tiến mới

    THÔNG SỐ KỸ THUẬT CỦA MÁY TÍNH CASIO FX 580VNX

    • Thương hiệu: CASIO
    • Model: FX – 580 VNX
    • Màu: đen
    • Loại: Máy tính
    • Chức năng: 552
    • Hiển thị: Hiển thị tương tự sách giáo khoa
    • Trọng lượng: 145 gr

    MÁY TÍNH CASIO FX 580VNX SỞ HỮU MÀN HÌNH LCD ĐỘ PHÂN GIẢI CAO

    Máy tính CASIO FX 580VNX là sản phẩm thuộc dòng máy ClassWiz sở hữu màn hình có độ phân giải cao vượt trội, giúp người dùng có thể dễ dàng xem các công thức và biểu tượng toán học một cách đơn giản. Độ phân giải của màn hình của FX 580VNX được tăng gấp 4 lần, hỗ trợ tăng lượng thông tin hiển thị cũng như cải thiện tính tiện dụng của sản phẩm. Máy có thể hiển thị số lượng ký tự gấp 2 lần ở kích thước bình thường và 6 lần ở kích thước nhỏ trên màn hình so với những dòng máy ES Plus trước đó.

    Độ phân giải của dòng ClassWiz cao hơn ES Plus

    Màn hình LCD độ phân giải cao giúp người dùng có thể dễ dàng nhìn thấy các hiển thị trên màn hình trong mọi điều kiện ánh sáng, kể cả trong phòng tối hoặc ngoài trời nắng. Màn hình LCD tốn ít dung lượng pin và ít ảnh hưởng đến sức khỏe của người dùng, tối ưu cho góc xem thẳng phía trên. Ngoài ra, màn hình cũng tạo được hiệu ứng mờ, hạn chế tình trạng mỏi mắt khi sử dụng.

    CASIO FX 580VNX có thể nhập bảng tính 5 cột và 45 hàng

    Đặc biệt hơn, các sản phẩm máy tính thuộc dòng ClassWiz còn được trang bị chức năng bảng tính cơ bản, có thể thao tác được bảng tính có diện tích lên tới 5 cột và 45 hàng, chứa được tối đa 170 mục dữ liệu. Chức năng bảng tính này chỉ trang bị ở FX 580VNX và FX 991 EX mà thôi. Sở hữu một chiếc máy FX 580VNX trong tay, bạn sẽ không còn phải lo lắng vấn đề nhập dữ liệu quá dài hoặc khó đọc dữ liệu như những dòng máy trước đó. Điều này tạo được tâm lý thoải mái cho người dùng, tăng hiệu quả tính toán đồng thời mang đến kết quả tốt hơn khi sử dụng, đặc biệt là trong các kỳ thi.

    MÁY TÍNH CASIO FX 580VNX THÂN THIỆN VỚI NGƯỜI DÙNG

    Chiếc máy tính CASIO FX 580VNX rất thân thiện, dễ sử dụng; người dùng có thể tận dụng đầy đủ các tính năng hiển thị với giao diện dễ dùng cùng thiết kế kiểu dáng hiện đại, tiên tiến.

    Giao diện máy tính CASIO FX 580VNX dễ hiểu

    Một trong những cải tiến dễ thấy ở chiếc máy tính CASIO FX 580VNX là màn hình LCD có độ phân giải cao với giao diện máy dễ sử dụng. Tất cả các ký hiểu, biểu tượng sẽ được hiển thị rõ ràng trên màn hình máy tính. Bằng việc sử dụng biểu tượng trên màn hình menu, người dùng có thể dễ dàng lựa chọn những chức năng mình mong muốn một cách nhanh chóng. Điều này giúp cải thiện khả năng hiển thị của sản phẩm. Đồng thời, việc tính toán và lựa chọn công thức hoặc chế độ cũng nhanh hơn so với những dòng máy khác.

    Ngoài ra, hầu các từ tiếng Anh xuất hiện trên màn hình chiếc máy FX 580VNX đều ở dạng đầy đủ chứ không viết tắt nên rất dễ hiểu, giúp nâng cao khả năng ngoại ngữ khi sử dụng máy. Màn hình menu cũng tương tác hỗ trợ nhiều các thao tác trực quan hơn những dòng máy trước.

    Giao diện dễ hiểu của CASIO FX 580VNX

    Mục tiêu từ trước đến nay của nhà sản xuất CASIO là mang công thức toán học, các ký hiệu trên máy tính có cách hiển thị gần hơn với sách giao khoa, tạo được hiệu quả trực quan, dễ ứng dụng thực tế và nâng cao khả năng học tập. Điều này được thể hiện rõ nét thông qua dòng sản phẩm ClassWiz, cụ thể là chiếc máy tính FX 580VNX. Việc nhập và hiển thị các phân số, căn bậc hai, căn, lũy thừa và các biểu tượng toán học khác có định dạng giống hệt với sách giáo khoa nên rất dễ hiểu. Đây cũng là một cải tiến hoàn toàn mới của dòng máy ClassWiz so với dòng MS.

    Kiểu dáng máy tính CASIO FX 580VNX mang lại cảm giác thoải mái khi sử dụng

    Thân máy FX 580VNX được thiết kế mới hoàn toàn, nổi bật với kiểu dáng thông minh, họa tiết trang nhã đi kèm với vỏ trượt cứng đặc trưng của CASIO. Lớp bề mặt máy FX 580VNX đã trải qua quy trình xử lý đặc biệt, khác với các dòng sản phẩm khác tạo nên vẻ đẹp thu hút, bắt mắt nhưng thanh lịch. Người dùng có thể dễ dàng nhìn thấy các họa tiết hình học tuy đơn giản nhưng cuốn hút ở trên bề mặt máy. Những họa tiết này tạo nên vẻ đẹp riêng có của chiếc máy FX 580VNX.

    Bàn phím có kiểu dáng sành điệu kết hợp với chất liệu kim loại vừa tạo cảm giác sang trọng, vừa tăng độ bền cho sản phẩm. Bàn phím kết hợp kim loại chỉ xuất hiện ở 2 sản phẩm là CASIO FX 580VNX và CASIO FX 991EX mà thôi. Hàng phím đầu tiên của máy được làm bằng chất liệu kim loại nên có thể dễ dàng gây ấn tượng với người dùng từ cái nhìn đầu tiên. Các phím còn lại được làm bằng plastic cực nhạy và nảy, hỗ trợ quá trình nhập liệu của người dùng nhanh hơn. Các phím chức năng được mã hóa màu, dễ dàng phân biệt với những phím khác tạo sự thuận tiện khi thao tác phím. Cách bố trí khá giống với những dòng máy trước đó nên người dùng có thể dễ dàng làm quen và thao tác chứ không mất nhiều thời gian tìm hiểu. Các phím chức năng có màu vàng, đỏ và xanh nổi bật trên nền đen của bề mặt máy nên rất dễ nhìn.

    CASIO FX 580VNX có kiểu dáng hiện đại, họa tiết trang nhã

    Tương tự với định dạng màn hình đã đề cập ở trên, các ký hiệu phím của FX 580VNX sử dụng các ký hiệu và biểu tượng tương tự như trong sách giáo khoa toán. Nhờ vậy, bề mặt hình in của bàn phím có vẻ tự nhiên giúp việc nhập dữ liệu nhanh và dễ dàng hơn. Chữ in sắc nét, kể cả những ký tự nhỏ vẫn có thể nhìn rõ từng chi tiết. Cách thiết kế này hỗ trợ tối đa cho người dùng, giảm thời gian thao tác xuống mức tối thiểu. Không những vậy, các dòng máy tính CASIO áp dụng công nghệ in đặc biệt nên bàn phím sẽ càng bóng, đẹp khi sử dụng, lâu bị mờ như những chiếc máy thông thường khác.

    Thân của FX 580VNX khá mỏng, cạnh máy được vát cong nhẹ nhàng vừa mang phong cách thanh lịch vừa giúp người dùng có thể cầm máy vừa vặn trong lòng bàn tay. Với thiết kế vừa vặn, độ bền chắc cao nhờ công nghệ Nhật Bản, máy tính CASIO FX 580VNX là sản phẩm không thể bỏ lỡ.

    MÁY TÍNH CASIO FX 580VNX LÀ TRỢ THỦ ĐẮC LỰC TRONG VIỆC HỌC TẬP

    Sản phẩm máy tính CASIO FX 580 VNX sở hữu một bộ xử lý hiệu suất cao và dung lượng bộ nhớ lớn gấp 2 lần các dòng máy trước đảm bảo tốc độ hoạt động nhanh và khả năng tính toán vượt trội. Trong những dòng máy tính được phép sử dụng trong trường học thì FX 580VNX là chiếc máy tính dẫn đầu với số lượng tính năng lên tới 552 tính năng. Máy đã bổ sung thêm nhiều chức năng tính toán cực hay mà những chiếc máy tính CASIO trước đây chưa có.

    Máy tính CASIO FX 580VNX hiệu suất cao, giảm thời gian tính toán xuống mức tối thiểu

    Chiếc máy tính FX 580VNX sở hữu màn hình độ phân giải cao, cụ thể là 192 x 63 điểm nên có khả năng hiển thị rõ ràng các hệ phương trình và nội dung. Đi kèm với ưu điểm đó là khả năng tính toán tốc độ cao, tiện dụng khi sử dụng trong lớp học và đặc biệt hữu ích trong các kỳ kiểm tra. Với chiếc máy tính CASIO FX 580VNX , bạn có thể tiết kiệm được rất nhiều thời gian giải toán nhờ việc bỏ qua những bước tính tay dễ xảy ra sai sót như tính tích, tổng, bảng số 2 hàm…Tất cả các thao tác đó có thể thực hiện dễ dàng trên chiếc máy FX 580VNX, giúp thời gian làm bài có thể rút ngắn được gấp đôi, gấp ba hoặc thậm chí hơn tùy theo từng dạng toán.

    Máy tính CASIO FX 580VNX có dung lượng bộ nhớ lớn, công suất xử lý đến 160 mục dữ liệu thống kê. Đây là một con số ấn tượng mà không phải chiếc máy tính khoa học cầm tay nào cũng có thể làm được. Ngoài ra, chiếc FX 580 VNX nói riêng và dòng máy ClassWiz nói chung sở hữu chức năng hiệu suất cao với 2 tính năng nổi trội là sử dụng bảng tính và phép tính ma trận 4 x 4. Đây là chức năng cải tiến mới, mang lại nhiều lợi ích vượt trội và chỉ xuất hiện tại dòng ClassWiz mà thôi.

    CASIO FX 580 VNX là trợ thủ đắc lực cho người dùng

    Chức năng hiển thị danh sách giúp việc học nhanh hơn và hoàn chỉnh hơn. Tất cả các kết quả tính toán hàm và biến lưu trong bộ nhớ đều có thể hiển thị trong danh sách. Do đó, người dùng không cần phải gọi lại và xác nhận từng giá trị như các mẫu máy trước đây. Đây là một tính năng hữu dụng, giúp rút gọn thời gian, giảm thiểu các thao tác bấm nút phức tạp và người dùng không phải nhớ quá nhiều giá trị trong khi làm toán. Chiếc CASIO FX 580VNX sở hữu năng lực điện toán cao có thể hỗ trợ tất cả các hoạt động toán cao cấp bao gồm tính bảng tính, tính ma trận 4 x 4, tính phương trình với bốn ẩn số và phương trình bậc hai cũng như khả năng tính phân phối thống kê nâng cao.

    Máy tính CASIO FX 580VNX có thể hỗ trợ giải toán cao cấp

    Máy tính CASIO FX 580VNX là bước đột phá mới về tính năng của dòng sản phẩm máy tính khoa học. Ngoài việc bổ sung thêm nhiều tính năng mới so với những chiếc máy tính cầm tay được ưa chuộng trước đây, máy tính FX 580VNX được đánh giá cao vì có khả năng giải được rất nhiều dạng toán thuộc tất cả các cấp học. Máy FX 580 VNX được trang bị một bộ hàn chỉnh các tính năng nâng cao. Tính năng này chỉ xuất hiện trong các dòng máy tính khoa học của CASIO, bao gồm cả FX 580VNX. Có thể điểm qua một số tính năng nâng cao của chiếc FX 580VNX như sau:

    Thứ nhất, máy tính CASIO FX 580VNX được trang bị chức năng tính bảng tính. Đây là chức năng rất hữu ích cho việc học thống kê, một phần quan trọng trong môn học toán cao cấp. Ngoài ra, chức năng bảng tính cũng cung cấp thêm khả năng nhập công thức đệ quy, áp dụng giả thuyết Riemann tính toán cao cấp. Chức năng bảng tính có thể ứng dụng với các số liệu thực tế dễ dàng hơn, tạo điều kiện cho học sinh, sinh viên sử lý các thống kê một cách đơn giản.

    Thứ hai, máy tính CASIO FX 580 VNX sở hữu chức năng tính toán phân bổ thống kê chi tiết. Chiếc FX 580VNX có thể thực hiện các loại phép tính phân phối khác nhau như:

    • Xác suất nhị thức
    • Phân phối tích lũy nhị thức
    • Mật độ xác suất bình thường
    • Phân phối tích lũy chuẩn
    • Phân phối tích lũy chuẩn nghịch đảo
    • Xác suất Poisson
    • Phân phối tích lũy Poisson

    Đây là danh sách những tính năng tính toán phân bổ thống kê chi tiết không phải chiếc máy tính nào cũng có. Bên cạnh đó, màn hình có độ phân giải cao, nhập dữ liệu dạng bảng tính sẽ cũng hỗ trợ các thao tác nhập dữ liệu nhanh hơn, chính xác hơn và dễ nhìn hơn. Các ký tự trên chiếc máy FX 580VNX tương tự với sách giáo khoa nên người dùng có thể dễ dàng làm quen, không phải nhìn vào sách hướng dẫn thường xuyên gây cảm giác khó chịu, nhanh nản và mất thời gian như những dòng máy khác.

    Thứ ba, chiếc máy FX 580 VNX sở hữu chức năng tính ma trận. Máy tính CASIO FX 580VNX có thể thực hiện tính toán với phép tính ma trận lên tới 4 hàng và 4 cột. Thường thì những chiếc máy tính trước đây là CASIO chỉ có thể giải được ma trận cấp 3 tương ứng 3 dòng và 3 cột mà thôi, còn cấp 4 thì người dùng buộc phải tính tay. Tuy nhiên, với bước cải tiến này thì việc tính ma trận bậc 4 có thể thực hiện một cách đơn giản với một chiếc máy tính. Còn gì tuyệt vời hơn khi chức năng này vừa giảm thời gian tính toán vừa tăng độ chính xác trong quá trình làm bài.

    CASIO FX 580VNX có thể giải nhiều dạng toán cao cấp

    Một số chức năng tính toán mới được nâng cấp xuất hiện trên FX 580VNX là giải phương trình tuyến tính có chứ từ 2 đến 4 ẩn số, giải bất đẳng thức bậc 2 cho đến bậc 4…Cũng giống như chức năng giải toán ma trận, FX 580VNX đã được nâng cấp lên thành giải bất đẳng thức bậc 4 thay vì bậc ba, phương trình tuyến tính 4 ẩn thay vì 3 ẩn giống như những dòng máy trước. Nhờ tính năng này, người dùng có thể dễ dàng kiểm tra nghiệm phương trình, bất phương trình…mà không còn phải lo lắng về những sai sót khi làm bài, đặc biệt hữu ích trong các bài kiểm tra và thi trắc nghiệm.

    Ngoài ra, chiếc máy tính CASIO FX 580VNX còn được tích hợp thêm tính năng tính tỷ lệ RATIO chính xác và tiện dụng. Nếu trước đây bạn phải tính tay các dạng toán, hóa có mức độ khó khá cao như tính tỉ số, số mol, tam suất gây mất thời gian, dễ dẫn đến sai số trong quá trình tính toán thì nay đã được CASIO FX 580VNX hỗ trợ tuyệt đối. Quả thực, CASIO FX 580VNX sở hữu quá nhiều tính năng tuyệt vời.

    VỚI CHIẾC MÁY TÍNH CASIO FX 580VNX, BẠN CÓ THỂ SỬ DỤNG DỊCH VỤ TRỰC QUAN HÓA TRỰC TUYẾN THÔNG QUA MÃ QR

    Mã QR là một mã ma trận hay còn gọi là mã vạch 2 chiều được phát triển bởi công ty Denso Wave, Nhật Bản vào năm 1994. Đây là một nhãn hiệu đã được đăng ký bởi Denso Wave tại Nhật Bản và một số quốc gia khác. QR là từ viết tắt của ‘Quick Response’, người dùng tạo ra nó có ý định cho phép mã được giải mã ở tốc độ cao. Chiếc máy tính CASIO FX 580VNX đã được nhà sản xuất tích hợp thêm tính năng chuyển đổi dữ liệu thành mã QR tiên tiến, hiện đại nhằm mục đích cung cấp hiệu ứng trực quan sinh động trong quá trình sử dụng.

    CASIO FX 580VNX hỗ trợ tính năng trực quan hóa thông qua mã QR

    Cách hiển thị hình ảnh đồ thị trực quan giúp công thức toán học dễ hiểu hơn

    • Bước 1: nhập công thức đầu vào
    • Bước 2: tạo bảng
    • Bước 3: nhập mã QR
    • Bước 4: Hiển thị đồ thị

    Nhập công thức dễ dàng tạo điều kiện làm báo cáo được thuận lợi và hiệu quả hơn

    • Bước 1: nhập công thức đầu vào
    • Bước 2: kết quả tính toán
    • Bước 3: nhập mã QR
    • Bước 4: công thức hiển thị

    Hiển thị hướng dẫn sử dụng một cách nhanh chóng giúp người dùng dễ nắm bắt được cách điều khiển và hoạt động của máy tính

    • Bước 1: hiển thị menu
    • Bước 2: nhập mã QR
    • Bước 3: hiển thị hướng dẫn

    Và còn rất nhiều ứng dụng QR khác đang chờ bạn khám phá ở chiếc máy tính CASIO FX 580VNX.

  • Các phép tính bảng tính: Hữu ích cho việc học thống kê. Lên tới 5 cột x 45 hàng (chứa được tối đa 170 dữ liệu).
  • Các phép tính ma trận: Thực hiện tính toán với ma trận lên tới 4 hàng và 4 cột.
  • Các phép tính vector: Thực hiện tính toán sử dụng lên tới 4 vec tơ bậc ba lưu trữ trong bộ nhớ máy.
  • Hiển thị nhiều hàng: Công thức tính toán được tự động xuống hàng thành nhiều hàng ở chế độ nhập tuyến tính.
  • Các phép tính tích phân: Thực hiện các phép tính tích phân trong toán cao cấp.
  • Các phép tính vi phân: Thực hiện các phép tính vi phân trong toán cao cấp.
  • Các phép tính phương trình: Tính hệ phương trình có từ 2 đến 4 ẩn số và phương trình bậc cao từ bậc 2 đến bậc 4.
  • Các phép tính bất đẳng thức: Giải bất đẳng thức từ bậc 2 đến bậc 4.
  • Các phép tính phân phối thống kê nâng cao: Thực hiện các phép tính bao gồm phân phối chuẩn, phân phối nhị thức và phân phối Poisson.
  • Cách phép tính tỷ lệ: Thực hiện các phép tính tỷ lệ như A:B=X:D
  • Các phép chuyển đổi hệ Mét: Lựa chọn các đơn vị Danh sách lệnh chuyển đổi theo hệ Mét.
  • Các hằng số khoa học: Lựa chọn các hằng số khoa học từ Bảng Hằng số Khoa học.
  • Danh sách các biến: Màn hình danh sách một chạm.
  • Danh sách thống kê: Hiển thị 6 hàng liền một lúc.
  • Dấu phân tách số: Cứ 3 số lại có một dấu phân tách, tạo điều kiện đọc các số lớn dễ dàng hơn.
  • Các ký hiệu kỹ thuật: Thực hiện tính toán kỹ thuật bao gồm các ký hiệu như k, M, m và n.
    • 10+2 chữ số: màn hình hiển thị 10 chữ số ở dãy số chính và 2 chữ số ở phần mũ.
    • Màn hình hiển thị ma trận điểm: Màn hình có độ phân giải cao nên cho phép hiển thị các ký tự một cách sắc nét.
    • Phát lại nhiều lần: Người dùng có thể nhanh chóng và dễ dàng truy xuất các biểu thức đã thực hiện trước đó để tiến hành các thao tác chỉnh sửa và thực hiện lại.
    • Các phím dẻo có kết hợp kim loại được thiết kế và chế tạo giúp dễ dàng thao tác.
    • Trình chỉnh sửa dữ liệu STAT dựa theo danh sách: người dùng có thể xem và chỉnh sửa dữ liệu nhập ở định dạng danh sách, hiện thị các nhóm dữ liệu như dữ liệu x, dữ liệu y, tần suất và dữ liệu làm tròn.
    • Hiển thị như trong sách giáo khoa: hiển thị các biểu thức giống như trong sách giáo khoa.

    LỜI KHUYÊN ĐỂ MUA MÁY TÍNH CASIO FX 580VNX THẬT

    Máy tính CASIO là một trong những dòng máy tính cầm tay được sử dụng nhiều nhất trong học tập và làm việc. Do vậy, thất dễ hiểu khi máy tính CASIO bị làm giả, làm nhái rất nhiều trên thị trường. Để tránh tình trạng mua nhầm một chiếc máy tính CASIO FX 580VNX giả, bạn cần nắm được một số thông tin sau trước khi mua máy:

    Thứ nhất, nhận biết tem chống giả được dán ở máy. Nếu trước đây tem máy tính Casio có màu vàng, rất dễ làm giả thì đến năm 2022, công ty CASIO Nhật Bản đã phối hợp với BITEX đổi sang một loại tem mới. Loại tem này được sản xuất theo công nghệ Đức với 3 đặc điểm nổi bật như sau:

    • Tương phản màu sắc chìm
    • Hiệu ứng logo nổi 3D
    • Soi đèn laser thì hiện lên chữ OK

    Cách phân biệt tem chống giả thật và giả (Nguồn: Bitex)

    Thứ hai, lưu ý kỹ nhãn mác, phiếu bảo hành máy. Khi mua máy, khách hàng cần quan sát kỹ bao bì, nhãn mác sản phẩm để phát hiện được hàng giả, hàng nhái. Những sản phẩm có tên thương hiệu gần giống với sản phẩm chính hãng CASIO hoặc chỉ thay đổi một vài chi tiết trên thương hiệu là sản phẩm nhái, không đảm bảo chất lượng. Ngoài ra, bạn cần kiểm tra xem số seri trên thân sau máy có khớp với số seri in trên phiếu bảo hành hay không. Mỗi máy tính CASIO chính hãng đều sở hữu một số seri riêng, trong khi máy tính giả thì có thể sử dụng 1 số seri cho nhiều máy.

    Thứ ba, không mua những model mà nhà sản xuất không cung cấp. Để hạn chế tình trạng làm giả, làm nhái thì CASIO thường xuyên đưa ra những cập nhật mới theo năm với những cải tiến nhỏ về công nghệ, tính năng cũng như số hiệu máy. Khách hàng nên chọn những mẫu máy mới thông qua việc tìm hiểu website, catalogue của nhà cung cấp chính hãng. Lưu ý: bạn cần nhớ ký hiệu model cần mua và không mua bất cứ model nào khác nếu không biết rõ. Ngoài ra, có một số model CASIO không sản xuất và cung cấp tại thị trường Việt Nam như M, DT, CA…Bạn cần nắm được thông tin này để sở hữu một chiếc máy tính CASIO chính hãng, chất lượng đảm bảo.

    Thứ tư, chỉ mua máy tính CASIO tại những cơ sở có uy tín, đại lý phân phối chính hãng để tránh tình trạng mua phải những chiếc máy kém chất lượng.

    Một số model giả tại Việt Nam để bạn tham khảo

    Máy tính CASIO FX 580VNX là một trong những sản phẩm mới nhất thuộc dòng ClassWiz của CASIO. Đây là chiếc máy tính áp dụng công nghệ tiên hiến, hiện đại có tốc độ giải nhanh, biểu tượng Menu chức năng, khả năng nhập liệu thông minh, thiết kế thanh lịch và sở hữu nắp trượt bảo vệ đặc trưng của dòng máy tính CASIO. chúng tôi là một website bán lẻ máy tính CASIO, Vinacal chính hãng với chất lượng tốt nhất cùng chính sách bảo hành cụ thể. Khách hàng có thể hoàn toàn yên tâm với các sản phẩm mua tại chúng tôi Ngoài ra, chúng tôi còn cung cấp các giải pháp trang trí máy tính đẹp mắt ấn tượng với tiêu chí “đẹp – độc – lạ”, đáp ứng mọi nhu cầu của khách hàng.

    --- Bài cũ hơn ---

  • Máy Tính Casio Fx 580Vnx
  • Giáo Án Toán Học Lớp 8 (Chuẩn Kiến Thức)
  • Lý Thuyết Phương Trình Bậc Nhất Một Ẩn Và Cách Giải Toán 8
  • Toán 8 Bài 2: Phương Trình Bậc Nhất Một Ẩn Và Cách Giải
  • Giải Phương Trình Bậc 2 Trong Java
  • Cách Sử Dụng Máy Tính Casio Fx 580Vnx, 570Vn Plus, 570Es Plus

    --- Bài mới hơn ---

  • Hướng Dẫn Thực Hành Giải Toán Trên Máy Tính Cầm Tay
  • Từ Điển Phương Trình Hóa Học
  • Chuyên Đề Hóa Học 8: Hướng Dẫn Học Sinh Lớp 8 Cân Bằng Phương Trình Hóa Học
  • Các Phương Pháp Giải Phương Trình Hàm Thường Dùng
  • Đề Cương Ôn Tập Môn Toán Lớp 8 Học Kì 2
  • Cách tìm x trên máy tính Casio fx 570VN Plus, 580VNX, 570ES Plus

    Lấy ví dụ: Giải phương trình: x2−x=0

    Để tìm x trên máy tính Casio fx 580VNX, 570VN Plus hay 570ES Plus, bạn thực hiện theo các bước sau:

    • Nhập vào biểu thức: x2−x, bấm =để lưu phương trình.
    • Nhập vào 0
    • Tìm nghiệm thứ hai: Di chuyển con trỏ về cuối biểu thức và đóng ngoặc biểu thức:
    • Chia biểu thức này cho (x−A)(x−A):
    • Bấm SHIFT SOLVE, nhập vào 0=0
    • Thu được nghiệm thứ hai:

    back to menu ↑

    Cách reset máy tính Casio fx 570VN Plus, 580VNX, 570ES Plus

    Để khôi phục cài đặt, bạn bấm: SHIFT + 9

    Reset máy tính Casio fx 570VN Plus, 580VNX và 570ES Plus sẽ bao gồm 3 tùy chọn:

    back to menu ↑

    Cách bấm máy tính số phức liên hợp

    back to menu ↑

    Cách bấm máy tính đạo hàm

    Thời gian đầu có thể thao tác tính đạo hàm bằng máy tính còn mất thời gian do chưa quen, tuy nhiên đừng quá lo lắng, nếu bạn luyện tập thường xuyên thì dần dần sẽ quen và bấm nhanh hơn. Chúng ta bắt đầu thôi nào các bạn:

    back to menu ↑

    Cách chơi game trên máy tính Casio fx 580VNX

    Đang cập nhật…

    --- Bài cũ hơn ---

  • Toán 10] Phương Trình Đường Elip (Kèm Lời Giải)
  • Bài 3 : Phương Trình Đường Elip
  • Tổng Hợp Đề Kiểm Tra 1 Tiết Toán 11 Chương 1 Đại Số (Có Đáp Án)
  • Phương Trình Lượng Giác Cơ Bản
  • Java: Giải Phương Trình Bậc Nhất
  • Cách Bấm Máy Tính Số Phức Trên Casio 580 Vnx

    --- Bài mới hơn ---

  • Phương Pháp Học Cách Giải Phương Trình Bậc 2 Hiệu Quả
  • Cách Chữa Dị Ứng Tôm
  • Khi Bị Dị Ứng Hải Sản Cần Biết Điều Này
  • Nguyên Nhân, Triệu Chứng, Cách Xử Lý Khi Bị Dị Ứng Hải Sản
  • Bí Quyết Hay Trị Ngay Dị Ứng Hải Sản
  • I. MÔI TRƯỜNG SỐ PHỨC VÀ TÍNH NĂNG VỀ SỐ PHỨC TRÊN MÁY CASIO 580VNX

    1. CÁCH BẤM MÁY TÍNH SỐ PHỨC CÁC PHÍM BẤM CƠ BẢN

    Thiết lập môi trường tính toán số phức với lệnh MODE 2. Làm gì thì làm nhưng muốn làm việc với số phức thì ta phải thiết lập môi trường số phức đã. Khi bấm MODE 2 xong các bạn sẽ thấy góc bên trên màn hình có chữ i. Có nghĩa là môi trường số phức đã được thiết lập.

    2. CÁCH BẤM MÁY TÍNH SỐ PHỨC CÁC TÍNH NĂNG TRONG PHÍM OPTN

    II. CÁCH GIẢI PHƯƠNG TRÌNH SỐ PHỨC BẰNG MÁY TÍNH

    Trong môi trường số phức chúng ta không sử dụng được chức năng Shift+Solve để tìm nghiệm gần đúng. Vì vậy chúng ta sử dụng chức năng CALC. Trước hết để tiện việc tính toán ta chia thành các trường hợp sau để giải quyết: Phương trình bậc nhất; Phương trình bậc 2, bậc 3, bậc 4 với hệ số thực; Phương trình có chứa ít nhất 2 đại lượng trong 3 đại lượng z, liên hợp của z, mô đun của z.

    1. CÁCH BẤM MÁY TÍNH SỐ PHỨC GIẢI PHƯƠNG TRÌNH BẬC NHẤT

    Đối với phương trình bậc nhất đối với số phức z (hoặc đối với số phức liên hợp của z) ta rút z (hoặc đối với số phức liên hợp của z) ra sau đó bấm máy để thực hiện phép tính.

    Ví dụ minh họa:

    Tìm số phức z thỏa mãn: (2+3i)z-3+2i=4i-5.

    Lời giải:

    2. CÁCH BẤM MÁY TÍΝH SỐ PHỨC GIẢI PHƯƠNG TRÌNH CÓ CẢ Z VÀ SỐ PHỨC LIÊN HỢP CỦA Z

    Trước tiên chúng ta cần nắm được cái nguyên tắc của cách bấm dạng toán này đã. chúng tôi cũng đã tham khảo rất rất nhiều bài viết cũng như Video về vấn đề này. Nhưng chưa thấy ai giải thích. Mà chỉ có hướng dẫn bấm choách choách choách. Rất nguy hiểm khi bấm máy tính mà chúng ta không hiểu bản chất của bài toán.

    Ví dụ minh họa:

    Tìm số phức z thỏa mãn phương trình sau:

    Giả sử z=a+bi (a,b∈R) thì qua vài bước biến đổi ta được:

    * BẤM MÁY TÍNH GIẢI PHƯƠNG TRÌNH SỐ PHỨC

    Cụ thể chúng ta có thể bấm máy giải phương trình trên như sau:

    Trong môi trường số phức (MODE 2) bấm: (1+i)x+(2-3i)conjg(x)-3+4i. Tiếp theo bấm CALC 1000+0.01i và bấm =.

    2996,96=3.1000-4.0,01-3 và -1996,01=-2.1000-0,01+4.

    Vào chức năng MODE 9 để giải hệ phương trình bậc nhất 2 ẩn ta thu được kết quả.

    3. CÁCH BẤM MÁY TÍΝH SỐ PHỨC GIẢI PHƯƠNG TRÌNH BẬC 2, BẬC 3, BẬC 4 VỚI HỆ SỐ THỰC

    Đối với phương trình bậc 2, bậc 3, bậc 4 với hệ số thực chúng ta không giải trong môi trường số phức MODE 2. Mà ta giải bằng chức năng MODE 9 2 (bậc của phương trình).

    Kết quả thu được sẽ bao gồm cả các nghiệm thực và các nghiệm phức (nếu có) của phương trình.

    Từ đó ta thu được 2 nghiệm phức của phương trình đã cho.

    4. CÁCH BẤM MÁY TÍΝH SỐ PHỨC GIẢI PHƯƠNG TRÌNH BẬC 2 VỚI HỆ SỐ PHỨC

    Lưu ý đây là 1 nội dung được giảm tải nên các bạn có thể bỏ qua nếu thấy không cần thiết.

    4.1. CÁCH BẤM CĂN BẬC 2 CỦA MỘT SỐ PHỨC

    Mỗi số phức z đều có 2 căn bậc 2 là w và -w. Trong đó w thỏa mãn w²=z.

    Có 2 cách để chúng ta bấm căn bậc 2 của 1 số phức. Ví dụ chúng ta cần bấm căn bậc 2 của số phức 3+4i.

    Cách 1: Trong môi trường số phức (MODE 2) ta bấm như hình dưới. Giải thích: Phần bên trái là căn mô đun của 3+4i, phần bên phải là 1 nửa Argument của 3+4i.

    Cách 2: Trong môi trường Calculate (MODE 1) ta bấm như hình dưới.

    Giải thích: Bước đầu (Hình thứ nhất) ta chuyển điểm (3;4) về tọa độ cực. Bước tiếp theo (Hình thứ 2) ta tính 1 căn bậc 2 của số phức 3+4i. Vậy số phức 3+4i có 2 căn bậc 2 là 2+i và -2-i.

    4.2. CÁCH BẤM GIẢI PHƯƠNG TRÌNH BẬC 2 VỚI HỆ SỐ PHỨC

    Giải phương trình sau z²-(4-3i)z+1-7i=0.

    Cách bấm máy tính bỏ túi:

    Trước tiên vào môi trường số phức MODE 2 bấm Delta như hình

    --- Bài cũ hơn ---

  • Phương Trình Bậc Hai Một Ẩn Máy Tính Casio Fx 500Ms, Fx 570Ms
  • Sáng Kiến Kinh Nghiệm Hướng Dẫn Học Sinh Khá Giỏi Lớp 9 Giải Nhanh Một Số Bài Toán Bằng Biệt Thức Delta
  • Phương Trình Trùng Phương Lớp 9: Lý Thuyết, Cách Giải, Các Dạng Bài Tập
  • Hướng Dẫn Giải Toán Lớp 4
  • Download Tải Game Đế Chế Aoe 1 Việt Hoá
  • Hỗ Trợ Vẽ Đồ Thị Hàm Số Bậc 2 (Parabol) Trên Casio Fx 580Vnx Nhanh Chóng

    --- Bài mới hơn ---

  • Top 7 Phần Mềm Vẽ Đồ Thị Hàm Số Trên Máy Tính
  • Đồ Thị Hàm Số Chứa Giá Trị Tuyệt Đối
  • Đồ Thị Hàm Số Chứa Dấu Giá Trị Tuyệt Đối
  • Công Dụng Và Cách Thực Hiện Lệnh Vẽ Đường Cong Trong Cad
  • Chương Ii. §3. Hàm Số Bậc Hai
  • Vẽ đồ thị hàm số bậc 2 là một trong những yêu cầu quan trọng mà học sinh phải thực hiện được, nhiều học sinh gặp khó khăn khi vẽ đồ thị loại này do đó chúng tôi mời các bạn cùng xem qua cách sử dụng máy tính cầm tay CASIO fx 580VNX để hỗ trợ vẽ đồ thị qua bài toán sau

    Bài toán Vẽ đồ thị hàm số bậc 2: Vẽ đồ thị ((P)) của hàm số bậc 2 (y=f(x)=-{{x}^{2}}+4x-3)

    (Trích đề kiểm tra giữa kì 1, 2022-2017 THPT Gia Định) Lời giải:

    Nhắc lại cách vẽ đồ thị hàm số bậc 2:

    Để vẽ đường parabol ( y=a{{x}^{2}}+bx+c) ((ane 0)), ta thực hiện các bước:

    Bước 1: Xác định toạ độ của đỉnh ( Ileft( -dfrac{b}{2a};dfrac{-Delta }{4a} right)).

    Bước 2: Vẽ trục đối xứng ( x=-dfrac{b}{2a}).

    Bước 3: Xác định toạ độ các giao điểm của parabol với trục tung (điểm ((0;c)) và trục hoành (nếu có). Xác định thêm một số điểm thuộc đồ thị (thông thường chúng ta chọn 2 cặp điểm đối xứng với nhau qua đỉnh (I))

    Quay trở lại bài toán, với máy tính cầm tay CASIO fx 580VNX ta có thể xác định nhanh các yếu tố để vẽ chính xác đồ thị parabol như sau:

    Bước 1: Mở chức năng giải phương trình hàm số bậc 2:

    Bước 2: Nhập hệ số của hàm số bậc 2

    Ta nhận được toạ độ đỉnh là: (I(2;1)), trục đối xứng là đường thẳng (x=2)

    Bước 4: Lập bảng giá trị, ta chuyển về chế độ tính toán chung w1 và nhập vào biểu thức của hàm số:

    Ta CALC tại các giá trị (x=0,x=1,x=3,x=4) (Ta chọn các cặp giá trị đối xứng qua giá trị (x=2)). Thao tác CALC trên máy tính như sau:

    Cách bấm: r0==r1==r3==r4==

    Ta được bảng giá trị như sau:

    Nhận xét: Ta chỉ cần tính giá trị (f(x)) tại 2 giá trị bên trái trục đối xứng vì 2 giá trị bên phải sẽ tương ứng bằng với 2 giá trị bên trái (do tính đối xứng trục của parabol).

    Ta lần lượt xác định các điểm trong bảng giá trị lên mặt phẳng toạ độ (Oxy) và vẽ đồ thị của hàm số đã cho bằng cách nối “mềm mại” các điểm trên lại.

    --- Bài cũ hơn ---

  • Cô Gái Vàng Trong Làng Vẽ Đồ Thị: Dùng Lược Kẻ Parabol Còn Đẹp Hơn Cả Dùng Thước Chuyên Nghiệp
  • Cách Vẽ Đồ Thị Trong Microsoft Word
  • Choáng Với Tuyệt Chiêu Của Zygarde Trong Pokémon Sun Và Pokémon Moon
  • Điểm Danh Những Pokemon “có Số Có Má” Và Cách Bắt Chúng (P.2)
  • Pokemon 8643 Mega Reshiram Pokedex: Evolution, Moves, Location, Stats
  • Giải Hệ Phương Trình Bằng Máy Tính Fx 570 Es Plus

    --- Bài mới hơn ---

  • Hướng Dẫn Sử Dụng Máy Tính Casio Fx 570Vn Plus
  • Giải Bài Tập Trang 19, 20 Sgk Toán 9 Tập 2 Bài 20, 21, 22, 23, 24, 25,
  • Bài Tập Giải Bài Toán Bằng Cách Lập Hệ Phương Trình Lớp 9 Có Đáp Án
  • Cách Viết Và Cân Bằng Phương Trình Hoá Học
  • 12 Cách Cân Bằng Phương Trình Hóa Học Chuẩn Nhất
  • Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 1 Bí Kíp Công Phá Kì Thi THPT Quốc Gia Giải Hệ Phương Trình Bằng Máy Tính Fx 570 ES PLUS Version 2.0 I, Giới thiệu Xin chào tất cả các em! Khi các em đang đọc những dòng này là các em đang nắm trên tay bí kíp giải hệ phương trình giúp tăng khả năng lấy điểm thứ 9 của các em một cách dễ dàng hơn. Hi vọng, sau khi đọc xong tài liệu này, các em sẽ cảm thấy Hệ Phương Trình thật đơn giản và không còn thấy sợ câu thứ 9 này nữa. Ở phiên bản 2.0 này anh sẽ bổ sung, sửa đổi, hoàn thiện, nâng cấp rất nhiều vấn đề của version 1.0 II, Lý do chọn đề tài Có rất nhiều em gửi thắc mắc tới anh : "tại sao anh lại giải câu hệ như vậy ?" đó cũng là câu hỏi anh đã từng băn khoăn hồi còn ôn thi như các em, mà không một thầy giáo nào giải thích cho anh cả, anh phải tự mò mẫm cho mình 1 lý do, các thầy chỉ dạy cho mình phương pháp làm là chính chứ rất ít khi các thầy giải thích tại sao và thường chỉ đưa ra dấu hiệu là người ta cho thế này thì mình làm thế này. Nhưng hôm nay, anh sẽ trình bày với các em một hướng đi mới trong việc công pháp điểm thứ 9 này với máy tính fx 570 ES PLUS, đảm bảo học xong các em ở mức Trung Bình - khá chăm chỉ 1 chút cũng sẽ làm được, thực tế là sau khi anh phát hành version 1.0 đã khá nhiều bạn quay lại cảm ơn anh, vì đã làm thành công nhiều hệ phương trình. III, Yêu cầu chung 1. Có tinh thần Quyết tâm đỗ Đại Học !!! 2. Có kiến thức căn bản sử dụng các phương pháp thế, đưa về phương trình tích, phương pháp hàm số, phương pháp đánh giá... Ví dụ như: Đưa về phương trình tích 0 . 0 0 A A B B      Phương pháp hàm số: ( ) ( )f x f y mà hàm f đồng biến ( nghịch biến) trên đoạn  ;a b và  , ;x y a b Thì phương trình có nghiệm duy nhất là x = y Phương pháp đánh giá: thường là sử dụng BĐT Cô-Si vì BĐT này có trong SGK lớp 10 Ta có : , 0; 2a b a b ab    3. Có 1 chiếc máy tính có tính năng SOLVE : fx 570 es plus, fx 570 es, .... Lý do anh chọn Fx 570 ES PLUS vì đây là máy tính hiện đại nhất được mang vào phòng thi bây giờ và là bản nâng cấp của fx 570 es nên sẽ cho tốc độ cao hơn chút và có một số tính năng mới. IV, Nội Dung Truy cập chúng tôi để download thêm các tài liệu học tập khác kh on gb oc uo .co m Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 2 Anh sẽ hướng dẫn các em công phá tất cả các hệ phương trình từ 2010 cho tới nay bằng máy fx 570 es plus theo cách tự nhiên và dễ hiểu nhất. * Đường lối chung để giải 1 hệ phương trình : Vậy vai trò của máy ở đây là gì ? Máy tính sẽ giúp ta làm chủ cuộc chơi chứ không phải tác giả nữa, tức là nhờ máy ta sẽ tìm được mối quan hệ ở Bước 2 để áp dụng phương pháp cho thích hợp, tránh hiện tượng "mò", và ở Bước 3 cũng vậy. Vai trò chính là giúp ta định hướng cách làm nhanh hơn.  Nội dung chính của tài liệu này: (Anh chỉ bám sát nội dung thi, không đi quá xa đà vào những hệ quá khó, quá phức tạp so với đề thi) Anh sẽ chia ra làm 2 dạng cơ bản : 1. Từ 1 phương trình là đã tìm luôn được quy luật ( 90% Đề thi thử và ĐH cho dạng này) Biểu hiện: khi cho Y nguyên thì X, 2X tìm được là số nguyên 2. Phải kết hợp 2 phương trình thì mới tìm ra được quy luật ( một số đề thi thử cho) Biểu hiện là cho Y nguyên nhưng được X, 2X rất lẻ Muốn tìm được quy luật giữa x và y của dạng này các em cần kết hợp 2 phương trình như cộng trừ 2 vế để khử số hạng tự do. *Sau khi tìm được mối liên hệ giữa X và Y thế vào 1 phương trình còn lại thì lại có 2 khả năng chính a. Bấm máy phương trình ra nghiệm đẹp : vậy là xác suất 90% xử lý được b. Bấm máy phương trình ra nghiệm xấu: Từ 1 trong 2 phương trình, hoặc phức tạp hơn là phải kết hợp 2 phương trình Mối quan hệ giữa x và y (muốn làm được điều này thì các em phải dùng các pp thế, đưa về phương trình tích, ẩn phụ, hàm số, đánh giá.) Thế vào 1 trong các phương trình để đưa về phương trình 1 ẩn, có thể là giải được luôn, hoặc có thể là một phương trình chứa căn phải dùng thêm phương pháp mới giải được, tùy vào mức độ đề thi Truy cập chúng tôi để download thêm các tài liệu học tập khác ho gb oc uo .co m Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 3 thường đề ĐH họ chỉ cho nghiệm xấu dạng a a b c       là những nghiệm của phương trình bậc 2, muốn xử lý được ta phải áp dụng định lý Vi-et đảo, anh sẽ nói rõ trong bài tập. Với phương pháp này các em có thể xử lý được 90% các hệ trong đề thi thử THPT Quốc Gia và đề thi chính thức, phương pháp này còn giúp chúng ta luyện giải phương trình vô tỷ rất tốt, thậm chí là bất phương trình vô tỉ. Nhưng phương pháp nào cũng có giới hạn của nó, có điểm mạnh điểm yếu riêng, anh sẽ trình bày cụ thể trong quá trình giải bài. *Dạng 1: Các mối quan hệ được rút ra từ 1 phương trình * Các ví dụ Ví dụ 1: (CĐ-2014) Giải hệ phương trình sau 2 2 2 2 x xy y 7 (x, y R) x xy 2y x 2y           * Nhận xét chung: Hệ gồm 2 phương trình 2 ẩn, điều đặc biệt là ở chỗ 1 phương trình có thể biến đổi được còn 1 phương trình thì không có gì mà biến đổi, nhìn qua thì các em thấy như vậy Vậy dàn ý chung là: từ phương trình biến đổi được đưa ra mối quan hệ x và y rồi thế vào phương trình không biến đổi được Bằng giác quan ta sẽ tìm các nào đó để xử lý phương trình số 2, các em đa số là sẽ cứ viết dùng đủ mọi cách nhóm và rồi tự biến đổi mò 1 lúc thì nó ra mối quan hệ x và y. Nhưng anh sẽ trình bày 1 phương pháp sử dụng máy tính để tìm mối liên hệ như sau: Sử dụng tính năng Solve: Các em biến đổi phương trình 2 về hết 1 vế : 2 2X XY 2Y X 2Y 0     Ấn trên máy: Alpha X 2x - Alpha X Alpha Y - 2 Alpha Y 2x Alpha + alpha X - 2 alpha Y ( không cần ấn = 0, khác version 1.0) Giải thích "Alpha X, Alpha Y" là gọi biến X, biến Y nhưng với máy tính thì mặc định X là biến, Y là tham số Sau đó các em bấm: Shift Solve Máy hiện : Y?  tức là máy hỏi ban đầu cho tham số Y bằng mấy để còn tìm X Các em khởi tạo giá trị ban đầu cho Y là 0 bằng cách nhập: 0 = Truy cập chúng tôi để download thêm các tài liệu học tập khác k on gb oc uo c.c om Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 4 Bây giờ máy sẽ xử lý Máy hiện: X = 0 tức là khi y=0 thì có nghiệm x=0 -R= 0 sai số của nghiệm là 0 Rồi vậy là được Y=0 thì X=0 Tiếp theo các em ấn "mũi tên chỉ sang trái" để quay trở về phương trình Lại bắt đầu khởi tạo giá trị ban đầu Y=1, X=0 Thì máy lại tính ra X = 2 Cứ như vậy tới Y=5, X =0 ta được bảng giá trị sau: Bảng 1: Y 0 1 2 3 4 5 X 0 2 -3 -4 -5 -6 *Cách 2: phức tạp hơn nhưng kiểm soát được toàn bộ nghiệm Với Y = 0 ta đã tìm được 1 nghiệm X = 0 Để xem phương trình có còn nghiệm nào khác không các em làm như sau: Ấn mũi tên sang ngang sửa phương trình thành: 2 2(X XY 2Y X 2Y): (X 0)     Phương trình này để bỏ nghiệm vừa tìm được và tìm nghiệm mới. Sau đó lại bấm như ban đầu thì được X = -1 Sau đó lại ấn 2 2X XY 2Y X 2Y (X 0)(X 1)       Sau đó lại bấm giải nghiệm thì máy báo " Can't solve" tức là vô nghiệm hay hết nghiệm rồi Vậy là được Y=0 thì X=0, X = -1 Tiếp theo các em ấn "mũi tên chỉ sang trái" để quay trở về phương trình Ta lại phải sửa phương trình thành: 2 2X XY 2Y X 2Y    Lại bắt đầu khởi tạo giá trị ban đầu Y=1, X=0 Thì máy lại tính ra X = 2 hoặc -2 Cứ như vậy tới Y=5 thì được các kết quả như sau: Bảng 2: Y 0 1 2 3 4 5 X 0 hoặc -1 2 hoặc -2 -3 hoặc 4 -4 hoặc 6 -5 hoặc 8 -6 hoặc 10 Truy cập chúng tôi để download thêm các tài liệu học tập khác kh on bo cu oc .co m Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 5 Cách 2 này tuy đẩy đủ nhưng sẽ rất mất thời gian chỉnh sửa phương trình nên trong tài liệu đa phần anh sẽ giải bằng cách 1, vì những bài thi ĐH không quá phức tạp *Cách 3: Để tìm nghiệm khác ngoài 1 nghiệm tìm được Ví dụ khi Y=0, lúc máy hỏi " Solve for X" Các em ấn 0 = sẽ tìm được nghiệm X = 0 Các em ấn "-9=" thì sẽ được nghiệm X = -1 Các em ấn "9=" thì sẽ được nghiệm X=0 Vậy là ta đã tìm được ngay 2 nghiệm X = -1 và X =0 khi Y= 0 Anh rất hay dùng cách 1 cho hệ và cách 3 cho phương trình 1 ẩn, để tăng tốc độ làm bài Các kết quả này hoàn toàn là do máy, từ bảng 1 ta thấy khi Y = 2 tới Y=5 anh thấy nó xuất hiện 1 quy luật gì đó Tại Y=0, Y=1 không xuất hiện quy luật do có nhân tử khác gây nhiễu bởi vì tính năng Solve là tính năng dò nghiệm theo công thức Newton nên nó sẽ tìm nghiệm gần với giá trị biến hiện tại của X , ở đây các TH chúng ta đều khởi tạo giá trị ban đầu X = 0. Từ Y=2 anh thấy nó xuất hiện 1 quy luật gì đó, dễ dàng nhận thấy là x+y+1 = 0 Vậy anh sẽ biến đổi phương trình 2 theo xem được không: Thêm bớt để ép nhân tử : 2 2 2 2 2 x xy 2y x 2y x xy 2y x 2y 0 x(x y 1) 2xy 2y 2y 0 x(x y 1) 2y(x y 1) 0 (x 2y)(x y 1) 0                               Vậy nghiệm vừa nãy bị nhiễu là do x-2y =0 Còn lại thì dễ dàng rồi nào: 2 ( 1) x y x y      thế vào phương trình đầu tiên * x=2y thì: 2 2 24 2 7 1y y y y      Anh nói thì dài thôi chứ lúc làm thì nhanh lắm!!! Như vậy là anh vừa trình bày chi tiết cách giải 1 bài hệ bằng máy tính casio fx-570 ES Plus nhưng bài trên là 1 bài dễ và chưa sử dụng một ứng dụng chính của Solve là tìm nghiệm phương trình 1 ẩn dù nó có phức tạp tới đâu. Truy cập chúng tôi để download thêm các tài liệu học tập khác k on gb oc uo c.c om Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 6  Nhận xét chung Thấy ngay phương trình số 2 khó biến đổi, phương trình 1 có vẻ dễ hơn , vậy ta thử xem nào Lưu ý ở bài này: điều kiện pt 1 là x y bởi vậy lúc khởi tạo giá trị ban đầu " Solve for X" các em phải nhập số lớn hơn Y, chẳng hạn là "9=" . Tại sao lại thế ? Vì nếu em cho Y = 3 mà giá trị ban đầu X = 2 thì máy sẽ có 2 kiểu dò nghiệm 1 là : 2 2,1 2,2 2,3 ....    2 là : .... 1,7 1,8 1,9 2    Nhưng đi theo đường nào thì x y cũng không xác định ngay, do đó máy dừng dò nghiệm và báo "Can't Solve" Do đó phải khởi tạo giá trị ban đầu của X lớn hơn Y Các em làm tương tự, anh cho kết quả luôn: Y 0 1 2 3 4 5 X 1 2 3 4 5 6 Dựa vào bảng ta thấy luôn : 1x y  hoặc 1x y  Vậy là đầu tiên anh đi theo hướng "x-y-1=0" trước vì vế phải có sẵn rồi kìa, chỉ cần biến đổi những số còn lại xem có được không là chuyển hướng luôn (1 y) x y x 2 (x y 1) y (1 y) x y x 2 (x y 1) y 0 (1 y) x y (x y 1) (y 1) (x y 1) y 0 (1 y) x y 1 (x y 1) 1 y 0                                             Tới đây phải nói là quá may mắn    (1 )( 1) 1 1 0 1 0 1 11 0 pt y x y y x y x y x y yy                         Ví dụ 2: (ĐH-B-2014) Giải hệ phương trình 2 (1 y) x y x 2 (x y 1) y 2y 3x 6y 1 2 x 2y 4x 5y 3                  (x, y là các số thực) Truy cập chúng tôi để download thêm các tài liệu học tập khác kh on gb oc uo c.c om Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 7 Thế vào phương trình 2 ta được: Với y = 1 thì 9-3x =0  x=3 Với y = x - 1 2 2 2 3( 1) 6 1 2 1 1 2 3 2 1 y y y y y y y y              Điều kiện ban đầu 0y  mà bây giờ lại có 1y  Vậy  0;1y Dễ thấy VT đồng biến với điều kiện trên, VP thì nghịch biến, các em tính đạo hàm ra sẽ thấy nên nếu phương trình có nghiệm thì sẽ là nghiệm duy nhất Thử bấm máy xem nào: 2 alpha X 2x + 3 alpha X -2 Alpha = 1- alpha X Sau đó bấm Shift solve 0 ,5 = Ta đang tìm X trong khoảng [0;1] mà nên phải khởi tại giá trị ban đầu X = 0,5 chẳng hạn được X=0,618033.. Nếu x nguyên thì xong rồi đó nhưng đằng này có vẻ không còn may mắn nữa. Vậy Bộ Giáo Dục cố tình ra nghiệm lẻ để làm khó ta, nhưng anh đã có cách Ta thử bình phương nghiệm X đó lên xem có đẹp không nhưng câu trả lời là không! Hi vọng nghiệm này không quá xấu, nó có dạng a b c  là dạng nghiệm của phương trình bậc 2 thì ta sẽ giải quyết được. *Tư duy ở đây là: phương trình trên nếu bình phương lên sẽ ra bậc 4 đầy đủ nên có thể phân tích được thành: 2 2 ' '(x )( )Sx P x S x P    Do đó anh chỉ cần tìm được 1 nhân tử 2(x )Sx P  là xong, vậy ta cần tìm 3 trong 4 nghiệm Về lý thuyết là vậy nhưng thực tế anh tìm cả 4 nghiệm luôn Bản chất của phương trình trên là bậc 4 nên ta sẽ bình phương lên để mất căn rồi chuyển sang 1 vế Các em nhập lại phương trình thành: (2 alpha X 2x + 3 alpha X -2) 2 - (1- alpha X) Các em bấm dấu "=" để lưu phương trình vào máy Sau đó bấm Shift solve 0 = Máy báo X = 0,3228. Sau đó các em bấm RCL X Shift STO A để lưu nghiệm X vừa tìm được vào A Vậy là được 1 nghiệm, để tìm nghiệm thứ 2 ta làm như nhau : Truy cập chúng tôi để download thêm các tài liệu học tập khác kh on g oc uo c.c om Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 8 Nhấn nút đẩy lên 2 lần để tìm phương trình ta đã lưu Đưa mũi tên chỉ sang trái, sửa phương trình thành: ((2 alpha X 2x + 3 alpha X -2) 2 - (1- alpha X)): ( X-A) Sau đó bấm Shift solve Máy hỏi A? 0,3228.. thì các em bấm dấu = Máy hiện "Solve for X" thì các em cũng ấn 0= Máy báo X = 0,6180.... Các em ấm phím đẩy sang trái rồi ấn = để lưu lại phương trình Sau đó các em bấm RCL X Shift STO B để lưu nghiệm X vừa tìm được vào B Vậy đã có nghiệm thứ 2, các em lại ấn nút đẩy lên 2 lần, rồi đẩy sang trái để sửa phương trình tìm nghiệm thứ 3 các em lại sửa thành ((2 alpha X 2x + 3 alpha X -2) 2 - (1- alpha X)) : ( X-A)(X-B) Sau đó bấm Shift solve = = 0= Được nghiệm thứ 3 là : X= -1,61803.. Các em ấm phím đẩy sang trái rồi ấn = để lưu lại phương trình Sau đó các em bấm RCL X Shift STO C để lưu nghiệm X vừa tìm được vào C Tương tự phương trình tìm nghiệm thứ 4 : ((2 alpha X 2x + 3 alpha X -2) 2 - (1- alpha X)) : ( X-A)(X-B)(X-C) Sau đó bấm Shift solve = = = 0= Các em sẽ được nghiệm thứ 4 là : X = -2,3228 Vậy ta đã được 4 nghiệm là A,B,C,X Ta biết rõ ràng là nghiệm B = 0,618 là nghiệm của phương trình ban đầu nên ta sẽ xét các tích BA,BC,BX xem tích nào đẹp Thấy ngay: BC = - 1 và B+C = -1 Vậy phương trình chứa nghiệm B,C này là 2 1x x  ( định lý Vi-et đảo) Đây chính là cách phân tích phương trình bậc 4 thành nhân tử với máy tính Vậy ta sẽ cố nhóm để xuất hiện nhân tử này: với bài thì là 2 1y y  , ép nhân tử như sau: Truy cập chúng tôi để download thêm các tài liệu học tập khác kh on gb oc uo c.c om Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 9 2 2 2 2 2 2 2 3 2 1 2( 1) 1 0 (1 ) 2( 1) 0 1 1 ( 1)(2 ) 0 1 5 1 5 1 ( ) 2 2 1 0 5 1 ( ) 2 y y y y y y y y y y y y y y y y y y tm x y y y loai                                           Ví dụ 3: (ĐH-AA1-2014) Giải hệ phương trình 2 3 x 12 y y(12 x ) 12 x 8x 1 2 y 2            (x, y là số thực) *Nhận xét chung: Ta thấy phương trình 1 dễ biến đổi hơn phương trình 2 Điều kiện 2 2 12 12 y x     * Anh cho bảng kết quả bấm máy luôn Y 2 3 4 5 6 12 0 X 3,16 3 2,828 2,64 2,44 0 3,464 Nhận xét chung là Y tăng thì X giảm Với Y=2, Y=4, Y=5, Y=6 thì kết quả xấu quá ta thử bình phương lên xem có sử dụng được không Y 2 3 4 5 6 12 0 2X 9,9999 9 8 7 6 0 12 Chứng tỏ các bác ở BGD cũng không làm khó ta lắm Nhận thấy 2 12y x  Căn cứ vào phương trình 1 thì sẽ là 212y x  Làm sao để chứng minh điều này, dễ thấy không thể phân thích thành nhân tử như bài trước được Giờ chỉ còn hàm số và đánh giá mà thôi Do x, y không độc lập lên không dùng hàm số được ( kinh nghiệm nhỏ của anh) Vậy thử đánh giá, mà có 2 tích nên chỉ có Cô-si thôi Truy cập chúng tôi để download thêm các tài liệu học tập khác on gb oc uo c.c om Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 10 Chúng ta dùng chức năng CALC để tính giá trị biểu thức Các em nhập nguyên vế trái vào: 2x 12 y y(12 x )   Alpha X 12 - alpha Y + alpha Y - (12 - alpha X 2x ) Sau đó các em bấm CALC Máy hiện X? em nhập 1 = Máy lại hỏi Y? em nhập vào là 11= hoặc tùy ý X 1 1 2 2 3 3 4 Y 10 11 10 11 8 11 Giá trị hàm 11,9 12 11,7 11,38 10,89 8,7 error Ta nhận thấy 12VT VP  vậy đánh giá là phương pháp đúng đắn Áp dụng Bất đẳng thức Cô-si ta được: 2 2 2 x (12 y) y (12 x )x 12 y y(12 x ) 12 2 2           Dấu "=" xảy ra khi 22 012 1212 xx y y xy x          Thế vào phương trình 2 ta được: 3 28 1 2 10x x x    Ta bấm máy xem có nghiệm nguyên không , có thì coi như xong Các em bấm như sau: Alpha X Shift 2x -8 Alpha X -1 = 2 10 - alpha X 2x Sau đó ấn Shifl Solve 9= Ra được x=3, tới đây có thể mỉm cười được rồi Ta sẽ biến đổi theo x-3 = 0 3 2 3 2 8 1 2 10 ( 8 3) 2(1 10 ) 0 x x x x x x            Anh ghép 1 với 210 x vì khi nhân liên hợp nó xuất hiện 2 9 ( 3)( 3)x x x    bấm máy cái này Được x=3 và 2 nghiệm xấu nhưng không sao vậy là được rồi Ta tiến hành chia 3 8 3x x  cho (x-3) được 2 3 1x x  Truy cập chúng tôi để download thêm các tài liệu học tập khác kh on gb oc uo c.c om Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 11 Vậy ta có: 2 2 2 2 2 2 2 ( 3)( 3 1) 2(1 10 ) 0 9 ( 3)( 3 1) 2. 0 1 10 2( 3) ( 3) 3 1 0 1 10 x x x x x x x x x x x x x x                             Ta có 0x  nên 2 2 2( 3) 3 1 0 1 10 x x x x        Do đó phương trình có nghiệm duy nhất x=y=3 Ví dụ 4: Đề thi thử THPT Quốc Gia của Sở GD TP. HCM Giải hệ phương trình :   22 2 2 1 2 2 1 y y y x x x y x y y y x               Giải: Khi nhìn vào 2 phương trình này thì ta thấy phương trình số 2 dễ biến đổi hơn phương trình 1, em nào không nhìn ra điều này thì đi thử cả 2 phương trình cũng được. Điều kiện: 2, 0x y  Các em nhập phương trình : 2 1x y x y y y x      như sau: Alpha X + 1 AlphaX AlphaY  + AlphaY AlphaX = Alpha Y 2x + Alpha Y Sau đó các em bấm: Shift Solve máy sẽ hiện " Y?" các em nhập 1 = Máy sẽ hiện " Solve for X" tức là khai báo giá trị ban đầu của X Các em bấm " 0 = " Máy sẽ trả về giá trị nghiệm X = 0,5. Vậy Y = 1 thì X = 0,5 Để tìm nghiệm tiếp với Y=2 thì các em bấm : Shift Solve máy sẽ hiện " Y?" các em nhập 2 = Cứ như vậy với Y = 3,4,5 ta thu được bẳng giá trị sau: Y 1 2 3 4 5 X 0,5 0,333= 1/3 0,25 = 1/4 0,2 = 1/5 0,16666.. =1/6 Truy cập chúng tôi để download thêm các tài liệu học tập khác kh on gb oc uo c.c om Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 12 Dựa vào bảng, ta thấy xuất hiện quy luật : 1 1 0 1 X XY X Y       Ta sẽ ép để xuất hiện nhân tử trên như sau: 2 2 2 3 2 2 2 1 1 0 ( 1) 0 ( 1) ( 1) 0 ( 1)( ) 0(3) x y x y y y x xy x y y y y x xy x x y y x xy xy x x y xy x xy x x y                                Rất may ở bài này chúng ta không bị nhiễu bởi nhân tử 2x y như ở ví dụ 1. Với 2, 0x y  thì 1 0xy x   nên từ (3) ta có : 2x y thế vào phương trình (1) ta c

    --- Bài cũ hơn ---

  • Tiết 41 Thực Hành Giải Toán Bằng Máy Tính Cáio
  • Giáo Án Đại Số 10 Nc Tiết 32: Luyện Tập Giải Phương Trình Bậc 2 Hdsd Máy Tính Casio Fx
  • Giáo Án Đại Số Lớp 10
  • Sách Giải Bài Tập Toán Lớp 9 Bài 4: Giải Hệ Phương Trình Bằng Phương Pháp Cộng Đại Số
  • Phương Trình Và Phương Trình Bậc Nhất Nhiều Ẩn
  • Giải Toán Trên Máy Tính Casio Fx 500 Ms

    --- Bài mới hơn ---

  • Các Giải Pháp Cân Bằng Phương Trình Hóa Học Nhanh, Chính Xác
  • Các Cách Cân Bằng Phương Trình Hóa Học Lớp 8 Bạn Cần Biết
  • Tính Theo Phương Trình Hóa Học Là Gì? Những Dạng Bài Tập Và Cách Giải
  • Lập Phương Trình Hóa Học
  • Ứng Dụng Hàm Số (Sử Dụng Tính Đơn Điệu) Giải Phương Trình, Bất Phương Trình
  • I/ Dạng bài toán tính cơ bản trên các phép tính

    1) Cách tính toán thông thường

    2) Bài toán liên phân số

    3) Cách tính bài toán có STP vô hạn toần hoàn

    4) Bài toán có tính quy luật

    5) Các bài toán giải phương trình (tìm x)

    Nội dung chương trình học cơ bản: I/ Dạng bài toán tính cơ bản trên các phép tính 1) Cách tính toán thông thường 2) Bài toán liên phân số 3) Cách tính bài toán có STP vô hạn toần hoàn 4) Bài toán có tính quy luật 5) Các bài toán giải phương trình (tìm x) II/ Dạng bài toán số học 1) Cách xác định một số là số nguyên tố hay hợp số 2) Cách phân tính một số ra thừa số nguyên tố 3)Cách tìm thương và số dư trong phép chia 2 số nguyên 4) Cách tìm UCLN của 2 hay nhiều số nguyên III/ Dạng bài toán trên dẫy số 1/ Dẫy Phibonaxi bậc 2 2/ Dẫy Phibonaxi bậc 3 3/ Dẫy Phibonaxi bậc mở rộng & các dẫy khác IV/ Dạng bài toán tăng trưởng dân số - Tiền gửi ngân hàng- Khấu hao V/Dạng bài toán trên đa thức 1/Tìm đa thức thương và số dư trong phép chia đa thức cho đơn thức 2/ Phân tích đa thức thành nhân tử 3/Phân tích đa thức theo bậc của đơn thức VI/Dạng bài toán mô tả thông kê VII/ Các dạng bài toán số-đại khác VIII/ Dạng toán có nội dung hình học A. KIếN THứC CƠ BảN- CáC DạNG BàI TậP MẫU- CáCH LàM I/ Dạng bài toán tính cơ bản trên các phép tính 1) Cách tính toán thông thường Các ví dụ Kết quả Ví dụ 1: Tính giá trị của các biểu thức sau a) A = b) C = Ví dụ 2: Tính giá trị của Ví dụ 3: Tính giá trị của biểu thức: a) A = b) B = c) C = Ví dụ 4: Tính giá trị của: a) A = b) B = (6492 + 13x1802)2 - 13x(2x649x180)2 c) C = d) D = ( Chính xác đến 6 chữ số thập phân) Ví dụ 5: Tính: Ví dụ 6: Tớnh S = chớnh xỏc đến 4 chữ số thập phõn. Ví dụ 7: : Tính giá trị của biểu thức: a) taùi b) c) A = B = C = Ví dụ 8: Tính giá trị của biểu thức M = chính xác đến 0,0001. : Ví dụ 9: Tính giá trị A = khi x = 1,8597 ; y = 1,5123 Ví dụ 10: Tính giá trị của D với x = 3,33 ( Chính xác đến số thập phân thứ tư) Ví dụ 11: Tính giá trị của D với x = 8,157 Ví dụ 12: Tính giá trị của biểu thức với Ví dụ 13: Tớnh Ví dụ 14: a) . b) Ví dụ 15: Tính : D = 0,3(4) + 1,(62) : 14 A= C= 1987 A = -53/27 B=19,7964389 C =-293/450 A=15/2 B = 1 C = 106/315 D=4,547219 A = 567,8659014 S = 1,006 2) Bài toán liên phân số 1) Tính giá trị của liên phân số: Các ví dụ Kết quả Ví dụ 1: Ví dụ 2: Tính B = Ví dụ 3: Tính Ví dụ 4: Ví dụ 5: Tính: A= Ví dụ 6: Tính A=680/157 B=700/1807 C=104260/137 B=98/157 C=17,2839O.. B=2,668765483 A=6223/1007 A=2006,656 2) Giải phương trình liên phân số: Các ví dụ Kết quả Ví dụ 1: Tìm giá trị của x từ phương trình sau: Ví dụ 2: Tìm x, biết: Ví dụ 3: Tìm y, biết: Ví dụ 4: Tỡm x bieỏt Ví dụ 5: Tìm x, biết: Ví dụ 6: Tìm x, biết: Ví dụ 7: Tìm x, biết: Ví dụ 9: 3) Tìm thành phần trong liên phân số: Các ví dụ Kết quả Ví dụ 1: Tìm các số tự nhiên a và b biết rằng: a) b) Ví dụ 2: Tìm các số tự nhiên a, b, c, d, e biết Ví dụ 3: Tỡm cỏc số tự nhiờn a, b, c, d, e biết: Ví dụ 4: Tỡm caực soỏ tửù nhieõn a vaứ b bieỏt Ví dụ 5: Ví dụ 6: Tỡm a vaứ b thuoọc soỏ tửù nhieõn . Ví dụ 7: , b) Ví dụ 8: a) b) II/ Dạng bài toán số học 4) Cách tìm UCLN-BCNN của 2 hay nhiều số nguyên Lý thuyết: - Để tỡm ƯCLN (a , b) ta dựa vào chức năng của mỏy và thuật toỏn Ơclớc như sau: Alpha A : Alpha B = Shift a/bc (Nếu mỏy khụng chuyển được về phõn số). Ta tỡm số dư của phộp chia trờn rồi gỏn vào C Bấm: Alpha B : Alpha C = Shift a/bc Nếu mỏy khụng chuyển được kết quả về phõn số ta tiếp tục như trờn cho đến khi chuyển được về phõn số ta lấy số bị chia chia cho tử của phõn số trờn màn hỡnh được kết quả chớnh là ƯCLN (a,b) Vớ dụ: Tỡm a) ƯCLN(90756918 ; 14676975) b ƯCLN(14696011; 7362139) Bấm: 90756918 Shift Sto A 14676975 Shift Sto B Alpha A : Alpha B = Shift a/bc (6,183625577) A - B.6 Shift C Alph B : Alpha C = Shift a/bc (được37925 /6964) Lấy B : 37925 = 387 Vậy: ƯCLN(90756918 ; 14676975) = 387 b) Tương tự ƯCLN(14696011; 7362139) = 23 BCNN(a,b) = ; BCNN (a,b,c) = BCNN [BCNN (a , b) ; c] *Ví dụ : Tìm : ƯCLN(62796045; 3 319 010 009) Cách làm 62 796 045đ A Lấy B:A = 52,85380646 B-52.AđB Lấy A:B =1,171225617 A-B đA Lấy B:A =5,804247611 B-5A đB Lấy A:B =1,90125372 A-BđA Lấy B:A=5.259687288=5 ( chú ý ấn phím ab/c để xem có chuyển kết quả về dạng phân số không ) A:1472=997 Vậy ƯCLN(62796045; 3 319 010 009)=997 III/ Dạng bài toán trên dẫy số

    --- Bài cũ hơn ---

  • 3 Cách Giải Hay Cho 1 Phương Trình Mũ Đơn Giản
  • Tài Liệu Bài Giảng: Phương Trình Đẳng Cấp Bậc Hai, Bậc Ba Đối Với Sin Và Cos
  • Pt Dang Cap Bac 2 Dv Sin Va Cos. Ptdangcapbac2Dvsinvacos Ppt
  • Giải Bài 35, 36, 37 Trang 11 : Bài 5 Phương Trình Chứa Ẩn Ở Mẫu
  • Bài 27,28 Trang 22 Sách Toán 8 Tập 2: Phương Trình Chứa Ẩn Ở Mẫu
  • Giải Bất Phương Trình Logarit Bằng Máy Tính Casio – Lingocard.vn

    --- Bài mới hơn ---

  • Chuyên Đề Bất Phương Trình Lớp 10 Violet
  • Đặt Ẩn Phụ Để Giải Phương Trình Và Bất Phương Trình Chứa Căn
  • Các Bài Tập Về Phương Trình, Bất Phương Trình, Hệ Phương Trình
  • Giáo Án Đại Số Lớp 10 Nâng Cao
  • Chuyên Đề Phương Trình – Bất Phương Trình Vô Tỉ
  • PHƯƠNG PHÁP 1: CALC THEO CHIỀU THUẬN

    Bước 1: Chuyển bài toán bất phương trình về bài toán xét dấu bằng cách chuyển hết các số hạng về vế trái. Khi đó bất phương trình sẽ có dạng Vế trái $ ge 0$ hoặc Vế trái $ le 0$

    Bước 2: Sử dụng chức năng CALC của máy tính Casio để xét dấu các khoảng nghiệm từ đó rút ra đáp số đúng nhất của bài toán .

    CALC THUẬN có nội dung: Nếu bất phương trình có nghiệm tập nghiệm là khoảng (a;b) (a;b) thì bất phương trình đúng với mọi giá trị thuộc khoảng (a;b)

    *Chú ý: Nếu khoảng (a;b) và (c;d) cùng thỏa mãn mà $left(

    ight) subset left(

    ight)$ thì (c;d) là đáp án chính xác

    Ví dụ minh họa

    VD1.

    Đang xem: Giải bất phương trình logarit bằng máy tính casio

    Bất phương trình $}}left( _3}frac}}}

    A. $left(

    ight)$

    B. $left(

    ight)$

    C. $left(

    ight) cup left(

    ight)$

    D. $left(

    ight) cup left(

    ight)$ (Chuyên Khoa học tự nhiên 2022)

    Lời giải:

    Nhập vế trái vào máy tính Casio

    Kiểm tra tính Đúng Sai của đáp án A

    +) CALC với giá trị cận trênX=-2-0,1 ta được

    Đây là 1 giá trị dương vậy cận trên thỏa

    +) CALC với giá trị cận dưới $X = – $

    Đây là 1 giá trị dương vậy cận dưới thỏa

    Tới đây ta kết luận đáp án A đúng

    Tương tự như vậy ta kiểm tra tính Đúng Sai của đáp án B thì ta thấy B cũng đúng

    A đúng B đúng vậy A$ cup $ B là đúng nhất và D là đáp án chính xác

    Bất phương trình $}}left( _3}frac}}}

    Vì cơ số $frac$ thuộc $left(

    ight.$

    ight.$

    ight.$

    ight.$ Cách Casio thì các bạn chú ý Đáp án A đúng , đáp án B đúng thì đáp án hợp của chúng là đáp án D mới là đáp án chính xác của bài toán.

    VD2. Giải bất phương trình $ – 4}} ge }$ :

    A. $x in left(

    ight) cup left( _2}5; + propto }

    ight)$

    B. $x in left(

    ight)$

    C. $x in left( _2}5 – 2}

    ight) cup left(

    ight)$

    D. $x in left( 5 – 2}

    Lời giải

    Chuyển bất phương trình về bài toán xét dấu $ – 4}} – } ge 0$

    Vì bất phương trình có dấu = nên chúng ta chỉ chọn đáp án chứa dấu = do đó A và C loại

    Nhập vế trái vào máy tính Casio

     Kiểm tra tính Đúng Sai của đáp án B và D

    +)CALC với giá trị cận trên X= -2 ta được

    +)CALC với giá trị cận dưới $X = – $

    Số $ – $ là số quá nhỏ để máy tính Casio làm việc được vậy ta chọn lại cận dứoi X= -10

    Đây cũng là một giá trị dương vậy đáp án nửa khoảng $left(

    Đi kiểm tra xem khoảng tương ứng $left( 5 – 2}

    +) CALC với giá trị cận dưới $X = 5 – 2$

    +) CALC với cận trên X=10

    Đây cũng là 2 giá trị dương vậy nửa khoảng $left( 5 – 2}

    Vì nửa khoảng $left( 5 – 2}

    Logarit hóa 2 vế theo cơ số 2 ta được $left( – 4}}}

    ight) ge left( }}

    ight) Leftrightarrow – 4 ge left(

    ight)5$

    $ Leftrightarrow left(

    ight)left( _2}5}

    ight) ge 0 Leftrightarrow leftegin x ge 2 x le 5 – 2 end

    ight.$

    Vậy ta chọn đáp án D.

    • Bài toán này lại thể hiện nhược điểm của Casio là bấm máy sẽ mất tầm 1.5 phút so với 30 giây của tự luận. Các e tham khảo và rút cho mình kinh nghiệm khi nào thì làm tự luận khi nào thì làm theo cách Casio

    • Các tự luận tác giả dùng phương pháp Logarit hóa 2 vế vì trong bài toán xuất hiện đặc điểm “ có 2 cơ số khác nhau và số mũ có nhân tử chung” các bạn lưu ý điều này.

    A. $S = left(

    ight)$

    B. S= (0;2)

    C. S=R

    D. $left(

    ight)$ (Thi HSG tỉnh Ninh Bình 2022)

    Lời giải

    Nhập vế trái vào máy tính Casio

    Kiểm tra tính Đúng Sai của đáp án A

    +) CALC với giá trị cận trên X= 10 ta được

    Đây là 1 giá trị âm vậy đáp án A loại dẫn đến C sai

     Tương tự như vậy ta kiểm tra tính Đúng Sai của đáp án B

    +) CALC với giá trị cận trên X=2- 0.1

    +) CALC với giá trị cận dứoi X= 0+ 0.1

    Cả 2 giá trị này đều dương vậy đáp án B đúng

    Vì D chứa B nên để xem đáp án nào đúng nhất thì ta chọn 1 giá trị thuộc D mà không B

    +) CALC với giá trị X= -2

    Giá trị này cũng nhận vậy D là đáp án chính xác

    ight)^x} + 3.}

    ight)^x} + }

    $ Leftrightarrow 2.}

    ight)^x} + 3.}

    ight)^x} + }

    Đặt $fleft( x

    ight) = 2.}

    ight)^x} + 3.}

    ight)^x} + }

    ight)^x}$ khi đó (1) $ Leftrightarrow fleft( x

    ight)$ (2)

    Ta có $f’left( x

    ight) = 2.}

    ight)^x}ln left( }

    ight) + 3.}

    ight)^x}ln left( }

    ight) + }

    ight)^x}ln left( }

    ight) < 0$ với mọi x

    $ Rightarrow $ Hàm số f(x) nghịch biến trên R

    Tiếp tục nhắc nhở các bạn tính chất quan trọng của bất phương trình : B là đáp án đúng nhưng D mới là đáp án chính xác (đúng nhất)  Phần tự luận tác giả dùng phương pháp hàm số với dấu hiệu “Một bất phương trình có 3 số hạng với 3 cơ số khác nhau” Nội dng của phương pháp hàm số như sau : Cho một bất phương trình dạng $fleft( u

    ight)$ trên miền $left$ nếu hàm đại diện f(t) đồng biến trên $left$ thì u= v còn hàm đại diện luôn nghịch biến trên $left$ thì u< v 2)

    Phương pháp 2: CALC theo chiều nghịch

    Bước 1: Chuyển bài toán bất phương trình về bài toán xét dấu bằng cách chuyển hết các số hạng về vế trái. Khi đó bất phương trình sẽ có dạng Vế trái $ ge 0$ hoặc Vế trái $ le 0$

    Bước 2: Sử dụng chức năng CALC của máy tính Casio để xét dấu các khoảng nghiệm từ đó rút ra đáp số đúng nhất của bài toán . CALC NGHỊCH có nội dung : Nếu bất phương trình có nghiệm tập nghiệm là khoảng (a;b) thì bất phương trình sai với mọi giá trị không thuộc khoảng (a;b)

    Ví dụ minh họa VD1. Bất phương trình $}}left( _3}frac}}}

    A. $left(

    ight)$

    B. $left(

    ight)$

    C. $left(

    ight) cup left(

    ight)$

    D. $left(

    ight) cup left(

    ight)$ (Chuyên Khoa học tự nhiên 2022 )

    Lời giải:

    Nhập vế trái vào máy tính Casio

    Kiểm tra tính Đúng Sai của đáp án A

    +) CALC với giá trị ngoài cận trên X= -2+ 0.1 ta được

    Vậy lân cận phải của -2 là vi phạm $ Rightarrow $ Đáp án A đúng và đáp án C sai

    Kiểm tra tính Đúng Sai của đáp án B

    +) CALC với giá trị ngoài cận trên X=4-0.1 ta được

    Đây là giá trị âm. Vậy lân cận tráii của 4 là vi phạm $ Rightarrow $ Đáp án B đúng và đáp án C sai

    Đáp án A đúng B đúng vậy ta chọn hợp của 2 đáp án là đáp án D chính xác.

    VD2. Giải bất phương trình $ – 4}} ge }$.

    A. $x in left(

    ight) cup left( _2}5; + propto }

    ight)$

    B. $x in left(

    ight)$

    C. $x in left( _2}5 – 2}

    ight) cup left(

    ight)$

    D. $x in left( 5 – 2}

    Lời giải:

    Chuyển bất phương trình về bài toán xét dấu $ – 4}} – } ge 0$

    Vì bất phương trình có dấu = nên chúng ta chỉ chọn đáp án chứa dấu = do đó A và C loại

    Nhập vế trái vào máy tính Casio

    Kiểm tra tính Đúng Sai của đáp án B

    +)CALC với giá trị ngoài cận trên -2 là X= -2+ 0.1 ta được

    Đây là 1 giá trị dương (thỏa đề bài) mà đáp án B không chứa X= -2+ 0.1 $ Rightarrow $ Đáp án B sai

    Đáp án A, C, B đều sai vậy không cần thử thêm cũng biết đáp án D chính xác

    A. $S = left(

    ight)$

    B. $S = left(

    ight)$

    C. S=R

    D. $left(

    ight)$ (Thi HSG tỉnh Ninh Bình 2022)

    Lời giải:

    Nhập vế trái vào máy tính Casio

    Kiểm tra tính Đúng Sai của đáp án A

    +) CALC với giá trị ngoài cận dưới 2 ta chọn X= 2-0.1

    Đây là 1 giá trị dương (thỏa bất phương trình) vậy đáp án A sai dẫn đến đáp án C sai

    Tương tự như vậy ta kiểm tra tính Đúng Sai của đáp án B

    +) CALC với giá trị ngoài cận dưới 0 ta chọn X= 0-0.1

    Đây là 1 giá trị dương (thỏa bất phương trình) $ Rightarrow $ Đáp án B sai

    Đáp án A, C, B đều sai vậy không cần thử thêm cũng biết đáp án D chính xác

    BÀI TẬP TỰ LUYỆN

    A. $left(

    ight) cup left(

    ight)$

    B. $left(

    ight) cap left(

    ight)$

    C. $left(

    ight) cap left(

    ight)$

    D. $left(

    ight) cup left(

    ight)$ (Thi thử chuyên Sư phạm Hà Nội lần 1 năm 2022)

    Bài 2. Tập xác định của hàm số $y = sqrt _}}left(

    ight) – 1} $ là :

    A. $left$

    C. $left(

    ight)$

    D. $left

    Bài 3.

    Nghiệm của bất phương trình $}left( + x – 6}

    e 2$

    D. $1 < x < sqrt 5 ,x

    e 2$

    (Chuyên Khoa học tự nhiên 2022)

    Bài 4. Giải bất phương trình $}

    ight)^ – x – 9}} le }

    ight)^}$:

    A. $x le – 2$

    B. $x ge 4$

    C. $ – 2 le x le 4$

    D. $x le – 2$ hoặc $x ge 4$

    (Chuyên Nguyễn Thị Minh Khai 2022)

    Bài 5. Bất phương trình $}} < 1$ có bao nhiêu nghiệm nguyên :

    A.1

    B. Vô số

    C. 0

    D. 2

    (THPT HN Amsterdam 2022)

    Bài 6. Tập nghiệm của bất phương trình $ – + 1 < 0$ là tập con của tập A. $left(

    ight)$ B. $left(

    ight)$ C. $left(

    ight)$ D. $left(

    A. $left(

    ight) cup left(

    ight)$

    B. $left(

    ight) cap left(

    ight)$

    C. $left(

    ight) cap left(

    ight)$

    D. $left(

    ight) cup left(

    ight)$

    (Thi thử chuyên Sư phạm Hà Nội lần 1 năm 2022)

    Lời giải:

    Kiểm tra khoảng nghiệm (1;2) với cận dưới X= 1+ 0.1 và cận trên X= 2- 0.1

    Hai cận đều nhận $ Rightarrow left(

    ight)$ nhận

    Kiểm tra khoảng nghiệm $left(

    ight)$ với cận dưới X= 3+0.1 và cận trên $X = $

    Hai cận đều nhận $ Rightarrow left(

    ight)$ nhận

    Tóm lại hợp của hai khoảng trên là đúng $ Rightarrow $ A là đáp số chính xác

    Casio cách 2

    Kiểm tra khoảng nghiệm (1;2) với ngoài cận dưới X= 3 – 0.1 và ngoài cận trên X= 2+ 0.1

    Hai cận ngoài khoảng (1;2) đều vi phạm $ Rightarrow $ Khoảng (1;2) thỏa

    Kiểm tra khoảng $left(

    ight)$ với ngoài cận dưới X= 3-0.1và trong cận dưới (vì không có cận trên)

    Ngoài cận dưới vi phạm, trong cận dưới thỏa $ Rightarrow $ Khoảng $left(

    ight)$ nhận

    Tóm lại hợp của hai khoảng trên là đúng $ Rightarrow $ A là đáp số chính xác

    Bài 2. Tập xác định của hàm số $y = sqrt _}}left(

    ight) – 1} $ là :

    A. $left$

    C. $left(

    ight)$

    D. $left

    Lời giải:

    Điều kiện : $}left(

    ight) – 1 ge 0$ ( trong căn $ ge 0$)

    Cận dưới vi phạm $ Rightarrow $ Đáp án A sai

    Kiểm tra khoảng nghiệm $left( }

    Hai cận đều nhận $ Rightarrow left( }

    Kiểm tra khoảng nghiệm $left(

    ight)$ với cận trên $X = $ $ Rightarrow $ Cận trên bị vi phạm $ Rightarrow $ C sai $ Rightarrow $ D sai

    Tóm lại A là đáp số chính xác

    Casio cách 2

    Đáp án A sai luôn vì cận x=1 không thỏa mãn điều kiện hàm logarit

    Kiểm tra khoảng nghiệm $left( }

    Ngoài hai cận đều vi phạm $ Rightarrow $ $left( }

    Hơn nữa $X = frac + 0.1$ vi phạm $ Rightarrow $ C và D loại luôn

    Bài 3. Nghiệm của bất phương trình $}left( + x – 6}

    e 2$

    D. $1 < x < sqrt 5 ,x

    e 2$ (Chuyên Khoa học tự nhiên 2022)

    Lời giải:

    Casio cách 1 Chuyển bất phương trình về dạng xét dấu $}left( + x – 6}

    Cận dưới vi phạm $ Rightarrow $ A sai $ Rightarrow $ C và D chứa cận dưới X=1 + 0.1 vi phạm nên cũng sai

    Tóm lại đáp số chính xác là B

    Casio cách 2

    Kiểm tra khoảng nghiệm (1;2) với ngoài cận dưới X=1 – 0.1 và cận dưới X=1 + 0.1

    Cận dưới X=1 + 0.1 vi phạm nên A , C , D đều sai

    Bài 4. Giải bất phương trình $}

    ight)^ – x – 9}} le }

    ight)^}$.

    A. $x le – 2$

    B. $x ge 4$

    C. $ – 2 le x le 4$

    D. $x le – 2$ hoặc $x ge 4$

    (Chuyên Nguyễn Thị Minh Khai 2022)

    Lời giải:

    Casio cách 1

    Chuyển bất phương trình về dạng xét dấu $}

    ight)^ – x – 9}} – }

    ight)^} le 0$

    Kiểm tra khoảng nghiệm $x le – 2$ với cận dưới X= -10 và cận trên X= -2

    Hai cận đều nhận $ Rightarrow $ $x le – 2$ nhận $ Rightarrow $ Đáp số chính xác chỉ có thể là A hoặc D

    Kiểm tra khoảng nghiệm $x ge 4$ với cận dưới X=4 và cận trên X= 10

    Hai cận đều nhận $ Rightarrow $ $x ge 4$ nhận

    Tóm lại đáp số chính xác là D

    Casio cách 2

    Kiểm tra khoảng nghiệm $x le – 2$ với ngoài cận trên X= -2+ 0.1 và cận trên X= -2

    Ngoài cận trên X= -2+ 0.1 vi phạm nên A nhận đồng thời C sai

    Kiểm tra khoảng nghiệm $x ge 4$ với ngoài cận dưới X= 4 -0.1 và cận dưới X=4

    Ngoài cận dưới X= 4 -0.1 vi phạm nên B nhận đồng thời C sai

    Tóm lại A , B đều nhận nên hợp của chúng là D là đáp số chính xác.

    Bài 5.

    Bất phương trình $}} < 1$ có bao nhiêu nghiệm nguyên.

    A. 1

    B. Vô số

    C. 0

    D. 2

    (THPT HN Amsterdam 2022)

    (Xem đáp án ở Bài 5 – phần 2 vì phương pháp sau tỏ ra hiệu quả hơn hẳn)

    Bài 6. Tập nghiệm của bất phương trình $ – + 1 < 0$ là tập con của tập?

    A. (-5, -2)

    B. (-4; 0)

    C. (1;4)

    D. (-3; 1)

    (Thi thử Báo Toán học tuổi trẻ lần 4 năm 2022)

    (Xem đáp án ở Bài 6 – phần 2 vì phương pháp sau tỏ ra hiệu quả hơn hẳn)

    --- Bài cũ hơn ---

  • Cách Giải Phương Trình Logarit Khác Cơ Số
  • Bất Phương Trình Bậc Hai Và Bất Phương Trình Qui Về Bậc Hai
  • Bất Phương Trình Bậc Nhất Hai Ẩn
  • Chuyên Đề Lượng Giác: Phương Trình – Bất Phương Trình – Hệ Phương Trình
  • Lý Thuyết Phương Trình Chứa Căn Môn Toán Lớp 10
  • Cách Giải Phương Trình Bậc Nhất Bằng Máy Tính Fx570Es, Pt Bậc Hai 1 Ẩn Máy Tính Casio Fx 570Es Plus – Lingocard.vn

    --- Bài mới hơn ---

  • Các Dạng Bài Tập Giải Phương Trình Bậc 2 Số Phức
  • Giải Phương Trình Bậc Hai Online, Cực Nhanh Tại Giaitoannhanh.com
  • Cách Giải Toán Bằng Máy Tính Casio Fx 570Vn Plus Chi Tiết Từ A – Z
  • Các Phương Pháp Giải Phương Trình Nghiệm Nguyên
  • Bài Giảng Môn Toán 6
  • Hiện nay việc giải các phương trình cơ bản trong môn Toán đã có sự hỗ trợ rất lớn từ Máy tính cầm tay. Trong đó Casio là một hãng máy tính được tin dùng bởi dễ sử dụng, chính xác và giá cả hợp lý. Gia Sư Việt sẽ hướng dẫn cách giải các phương trình Toán học bằng Máy tính Casio Fx – 570 MS Plus sẽ giúp học sinh có thể nhanh chóng áp dụng. Sau đó tìm ra kết quả và đối chiếu với phương pháp giải phương trình thông thường.

    Đang xem: Cách giải phương trình bậc nhất bằng máy tính fx570es

    Cách giải các dạng phương trình Toán bằng máy tính Casio

    1. Phương trình bậc nhất một ẩn

    Phương trình có dạng ax + b = 0, với a, b là những hằng số; a ≠ 0 được gọi là phương trình bậc nhất một ẩn số, b gọi là hạng tử tự do. Đối với phương trình này chỉ cần tính x = – b / a là xong.

    2. Các phương trình bậc cao một ẩn

    Phương trình bậc 2 một ẩn

    Phương trình bậc 2 có dạng: ax2+ bx + c = 0; trong đó x là ẩn số; a, b, c là các hệ số đã cho; a ≠ 0.

    Cách bấm máy tính: Đầu tiên ấn vào mode, sau đó chọn (5 – EQN), tiếp theo chọn phím (3) sẽ ra phương trình bậc 2 một ẩn. Tiếp đến nhập các hằng số a = ?, b = ?, c = ?. Hết các bước trên, máy tính sẽ hiện ra các nghiệm của bài toán.

    Giải phương trình bậc 3 một ẩn

    Phương trình bậc 3 có dạng: ax3 + bx2 + cx + d =0 ( trong đó x là ẩn; a, b, c, d là các hệ số; a ≠ 0 )

    Đầu tiên ấn vào mode, sau đó chọn (5 – EQN), tiếp theo chọn phím (4) sẽ ra phương trình bậc 3 một ẩn. Tiếp đến nhập các hằng số a = ?, b = ?, c = ?, d = ? Hết các bước trên, máy tính sẽ hiện ra các nghiệm của bài toán.

    Phương trình trùng phương bậc 4

    Phương trình trùng phương có dạng tổng quát: ax4 + bx2 + c = 0. Trong đó x là ẩn; a, b, c là các hệ số; (a ≠ 0)

    Ví dụ: giải phương trình sau: 4×4 – 109×2 + 225 = 0

    Ấn 4 ALPHA X4 – 109 ALPHA X2 + 225 ALPHA = 0; Sau đó ấn tiếp SHIFT SOLVE và Máy sẽ hỏi X? ( yêu cầu nhập giá trị ban đầu để dò nghiệm ). Sau đó ấn 1 = SHIFT SOLVE và đợi máy tính toán giây lát.

    Kết quả: x1= ; x2 = ; x3 = 5; x4 = – 5.

    Ta có thể cho giá trị ban đầu lớn hơn hoặc nhỏ hơn nghiệm vừa tìm được để dò nghiệm ( các phương trình khác nếu cho giá trị ban đầu là số lớn thì máy tính sẽ lâu hơn hoặc sẽ báo ngoài khả năng tính toán ).

    Phương trình hệ số đối xứng bậc 4

    Phương trình có dạng: ax4 + bx3+ cx2 + dx + e = 0. Trong đó x là ẩn, a, b, c, d, e là các hệ số; (a ≠ 0)

    Đặc điểm: Ở vế trái các hệ số của các số hạng cách đều số hạng đầu và số hạng cuối thì bằng nhau

    Ví dụ: Giải phương trình sau: 10×4 – 27×3 – 110×2 – 27x + 10 = 0

    Ấn 10 ALPHA X4 − 27 ALPHA X3 – 110 ALPHA X2 – 27X + 10 ALPHA = 0. Sau đó ấn tiếp tổ hợp SHIFT SOLVE và Máy sẽ hỏi X? ( yêu cầu nhập giá trị ban đầu để dò nghiệm ). Tiếp túc ấn 1 = SHIFT SOLVE đợi máy tính toán giây lát để thu được kết quả nghiệm.

    Phương trình dạng đặc biệt khác

    (x+a).(x+b).(x+c).(x+d) = m; với (a + d = b +c)

    Ví dụ: Giải phương trình (x +1).(x+3).(x+5).(x+7) = -15

    Ấn (ALPHA X + 1).(ALPHA X + 3).(ALPHA X+ 5).(ALPHA X +7) = -15. Sau đó ấn tiếp SHIFT SOLVE và Máy hỏi X? ( Máy yêu cầu nhập giá trị ban đầu để dò nghiệm ). Ấn 1 = SHIFT SOLVE đợi Máy tính giây lát để ra nghiệm.

    --- Bài cũ hơn ---

  • Ứng Dụng Của Máy Tính Cầm Tay (Từ Cơ Bản Đến Nâng Cao) Trong Giải Toán
  • Giải Phương Trình Bậc 2 Ax^2+Bx+C=0
  • Ma Oan Nghiệt Nhiều Đời
  • Trì Chú Để Giải Oan
  • Làm Thế Nào Để Tiêu Oan Giải Nghiệt ?
  • Phương Trình Bậc Hai Một Ẩn Máy Tính Casio Fx 500Ms, Fx 570Ms

    --- Bài mới hơn ---

  • Cách Bấm Máy Tính Số Phức Trên Casio 580 Vnx
  • Phương Pháp Học Cách Giải Phương Trình Bậc 2 Hiệu Quả
  • Cách Chữa Dị Ứng Tôm
  • Khi Bị Dị Ứng Hải Sản Cần Biết Điều Này
  • Nguyên Nhân, Triệu Chứng, Cách Xử Lý Khi Bị Dị Ứng Hải Sản
  • Như các bạn đã từng sử dụng máy CASIO fx 500MS , fx 570MS… để giải phương trình bậc hai nhưng với máy tính fx 570ES Plus thì có hơi khác hơn so với dòng máy trên ,ở đây xin giới thiệu với các bạn thao tác giải phương trình bậc hai trên máy tính CASIO 570ES PLUS:

    Với mode EQN giúp chúng ta giải phương trình bậc hai có dạng : ax 2 + bx + c=0

    Để giải phương trình này bằng máy tính CASIO fx570ES PLUS ta thực hiện như sau:

    Ta ấn vào mode mà hình máy sẽ hiện ra các các dòng :

    : COMP :CMPLX

    : STAT : BASE-N

    : EQN : MATRIX

    : TABLE : VECTOR

    Ta ấn phím để giải các phương trình bậc bậc và hệ phương trình

    Khi ta ấn phím màn hình sẽ hiện ra các dòng:

    :a nX+b nY=d n: dùng cho giải hệ phương trình bậc nhất hai ẩn

    : a nX + b nY + c nZ = d n dùng cho giải hệ phương trình bậc nhất ba ẩn

    : ax 2 + bx+ c = 0 đây là phương trình bậc hai một ẩn

    : ax 3 + bx 2 + cx + d = 0 đây là phương trình bậc ba một ẩn

    Để giải phương trình bậc nhất một ẩn ta ấn phím rồi ta nhập số rồi ấn phím

    Ví dụ: giải phương trình bậc hai một ẩn

    73x 2 – 47x -25460 = 0

    Ấn Mode rồi ấn phím (EQN) rồi ấn ax 2 + bx + c = 0

    ta nhập số 73( nhập a = 73)

    -47(nhập b = -47)

    -25460(nhập c = -24560)

    kết quả : X 1

    X 2

    Nếu ấn tiếp SD thì ta được kết quả X 2 = 18.3562

    Rồi ấn tiếp SHIFT SD thì ta đuợc X 2 =

    (*)Trường hợp vô nghiệm

    Ví dụ: ta cho phương trình x 2 + 2x + 4 = 0

    Ta nhập 1( nhập a = 1)

    2(nhập b = 2)

    4(nhập c = 4)

    Ta được kết quả là X 1 =

    X 2 =

    Đây là số phức dạng a+ib. Nếu gài dạng cực ta sẽ được X 1=

    X 2=

    ( đối với lớp 11 trở xuống khi xuất hiện nghiệm phức ta kết luận là phương trình vô nghiệm thực)

    --- Bài cũ hơn ---

  • Sáng Kiến Kinh Nghiệm Hướng Dẫn Học Sinh Khá Giỏi Lớp 9 Giải Nhanh Một Số Bài Toán Bằng Biệt Thức Delta
  • Phương Trình Trùng Phương Lớp 9: Lý Thuyết, Cách Giải, Các Dạng Bài Tập
  • Hướng Dẫn Giải Toán Lớp 4
  • Download Tải Game Đế Chế Aoe 1 Việt Hoá
  • Tổng Hợp Các Mã Lệnh Trong Game Đế Chế
  • Web hay
  • Links hay
  • Push
  • Chủ đề top 10
  • Chủ đề top 20
  • Chủ đề top 30
  • Chủ đề top 40
  • Chủ đề top 50
  • Chủ đề top 60
  • Chủ đề top 70
  • Chủ đề top 80
  • Chủ đề top 90
  • Chủ đề top 100
  • Bài viết top 10
  • Bài viết top 20
  • Bài viết top 30
  • Bài viết top 40
  • Bài viết top 50
  • Bài viết top 60
  • Bài viết top 70
  • Bài viết top 80
  • Bài viết top 90
  • Bài viết top 100