Xem Nhiều 1/2023 #️ Hệ Phương Trình Đối Xứng Loại 1 Và Bài Tập Ứng Dụng # Top 10 Trend | Maiphuongus.net

Xem Nhiều 1/2023 # Hệ Phương Trình Đối Xứng Loại 1 Và Bài Tập Ứng Dụng # Top 10 Trend

Cập nhật thông tin chi tiết về Hệ Phương Trình Đối Xứng Loại 1 Và Bài Tập Ứng Dụng mới nhất trên website Maiphuongus.net. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất.

Lý thuyết cần nắm

Định nghĩa

Hệ phương trình đối xứng loại 1 là hệ phương trình có dạng

(I) trong đó f(x; y), g(x; y) là các biểu thức đối xứng, tức là f(x; y) = f(y; x), g(x; y) = g(y; x).

Cách giải hệ phương trình đối xứng loại 1:

+ Đặt S = x + y, P = xy. + Biểu diễn f(x; y), g(x; y) qua S và P, ta có hệ phương trình:

, giải hệ phương trình này ta tìm được^ S, P.

+ Khi đó x, y là nghiệm của phương trình X^2- SX + P = 0 (1).

Một số biểu diễn biểu thức đối xứng qua S và P:

x^2 + y^2 = ( x + y)^2 – 2xy = S^2 – 2P

x^3 + y^3 = (x+y)( x^2 + y^2 – xy) = S^3 – 3SP

x^2y + y^2x = xy(x+y) = SP

x^4 + y^4 = ( x^2 + y^2) – 2x^2y^2 = ( S^2 – 2P) – 2P^2

+ Nếu (x; y) là nghiệm của hệ (I) thì (y; x) cũng là nghiệm của hệ (I). + Hệ (I) có nghiệm khi (1) có nghiệm hay S^2- 4P ≥ 0.

Ví dục minh họa

Ví dụ 1. Giải các hệ phương trình sau:

1.x + y + 2xy = 2 x^3 + y^3 = 8

2. x^3 + y^3 = 19 (x + y)(8 + xy) = 2

1. Đặt S = x + y, P = xy. Khi đó hệ phương trình đã cho trở thành: S + 2P = 2 S(S^2- 3P) = 8 ⇔ P =(2 – S)/2 S[S^2-( 6 – 3S)/2 = 8

⇒ 2S^3 + 3S^2- 6S- 16 = 0 ⇔ (S- 2)( 2S^2 + 7S + 8) = 0 ⇔ S = 2 ⇒ P = 0.

Suy ra x, y là nghiệm của phương trình: X^2- 2X = 0 ⇔ X = 0 X = 2

Suy ra x, y là nghiệm của phương trình X^2- X- 6 = 0 ⇔ X = 3 X = – 2 Vậy hệ phương trình đã cho có cặp nghiệm: (x; y) = ( − 2; 3), (3; − 2).

Ví dụ 5. Tìm m để các hệ phương trình sau đây có nghiệm:

1.x + y = m x^2 + y^2 = 2m + 1

2.x +1/x+ y +1/y= 5

x^3 +1/x^3 + y^3 +1y^3 = 15m- 10

Hệ phương trình có nghiệm khi và chỉ khi: S^2- 4P ≥ 0 ⇔ m^2- 2( m^2- 2m- 1) = – m^2 + 4m + 2 ≥ 0 ⇔ 2- √6 ≤ m ≤ 2 + √6.

Ví dụ 8: Cho hai số thực x, y thỏa x + y = 1.

Tìm giá trị nhỏ nhất của biểu thức: A = x^3 + y^3

Ta có: x, y tồn tại ⇔ hệ có nghiệm ⇔ S^2- 4P ≥ 0 ⇔ 1- (13-A)/3≥ 0 ⇔ A ≥1/4 Vậy giá trị nhỏ nhất của A là min A =1/4 ⇔ x = y =1/2

Ví dụ 9. Cho các số thực x ≠ 0, y ≠ 0 thỏa mãn:

(x + y)xy = x^2 + y^2- xy. Tìm giá trị lớn nhất của biểu thức: A =1/x^3 +1/y^3 .Xét hệ phương trình:

(x + y)xy = x^2 + y^2- xy

1/x^3 +1/y^3 = A

Đặt a =1/x, b =1/y (a, b ≠ 0), hệ phương trình trên trở thành: a + b = a^2 + b^2- ab

a^3 + b^3 = A

Hệ phương trình này có nghiệm ⇔ S^2 ≥ 4P ⇔ 3S^2 ≥ 4(S^2- S)⇔ S ≤ 4 ⇔ A = S^2 ≤ 16.

Đẳng thức xảy ra ⇔S = 4 P =(S^2 – S)/3= 4 ⇔ a = b = 2 ⇔ x = y =1/2 Vậy giá trị lớn nhất của A là max A = 16 ⇔ x = y =1/2.

Bài tập hệ phương trình đối xứng loại 1

Hệ Phương Trình Đối Xứng Loại 2 Và Bài Tập Ứng Dụng Có Giải

Lý thuyết về hệ phương trình đối xứng loại 2

Hệ phương trình đối xứng loại 2 là hệ phương trình có dạng: f(x;y) = a (*)

f(y;x) = a

Trừ hai phương trình của hệ cho nhau ta được: f(x; y)- f(y; x) = 0 ⇔ (x- y)g(x; y) = 0

Nếu hệ phương trình ( ∗ ) có nghiệm x0 ; y0 thì y0 ; x0 cũng là nghiệm của hệ phương trình ( ∗ ). Từ đó suy ra, nếu hệ phương trình ( ∗ ) có nghiệm duy nhất thì điều kiện cần là x0 = y0

f(x; y) + f(y; x) = 2a là một phương trình đối xứng.

Ví dụ minh họa

Giải các hệ phương trình sau.

1, x^3 + 1 = 2y

y^3 + 1 = 2x

Giải các hệ phương trình sau.

1, 3/x^2 = 2x + y Điều kiện: x,y ≠ 0

3/y^2 = 2y + x

Giải các hệ phương trình sau.

1, √x + √2- y = 2

√y + √2- x = 2

2, √5x + 1 + √12- y = 7 Điều kiện: 0 ≤ x, y ≤ 2.

√5y + 1 + √12- x = 7

Giải các hệ phương trình sau.

1, x^3 = 2x + y

y^3 = 2y + x

2, (x – 1)(y^2 + 6) = y(x^2 + 1)

(y – 1)(x^2 + 6) = x(y^2 + 1)

Tìm m để hệ phương trình sau có nghiệm: 2x + √y- 1 = m

2y + √x- 1 = m

Điều kiện: x, y ≥ 1.

Tìm m để các hệ phương trình sau có nghiệm duy nhất:

1, x = y^2 – y + m.

y = x^2 – x + m.

2, 3x^2 = y^3 – 2y^2 + my.

3y^2 = x^3 – 2x^2 + mx.

1. Điều kiện cần: Giả sử hệ có nghiệm (x0; y0) thì (y0; x0) cũng là nghiệm của hệ nên để hệ có nghiệm duy nhất thì trước hết x0 = y0

Thay vào hệ ta được: x^2o – 2xo + m = 0, phương trình này có nghiệm duy nhất ⇔ Δ′ = 1- m = 0 ⇔ m = 1.

Điều kiện đủ: Với m = 1 hệ trở thành: x = y^2 – y + 1.

y = x^2 – x + 1.

Vậy hệ phương trình đã cho có nghiệm duy nhất khi và chỉ khi m = 1.

Chứng minh rằng hệ phương trình 2x^2 = y + a^2/y có nghiệm duy nhất với mọi a ≠ 0.

2y^2 = x + a^2/x

2y^2 = x + a^2/x

Thay vào hệ phương trình, ta được: a^2 = 2x^3 – x^2 = f(x) ( ∗ ).

Ta có: f(x) = 2x(3x -1) ⇒ f′(x) = 0 ⇔ x =1/3

Vậy hệ đã cho luôn có nghiệm duy nhất với mọi a ≠ 0

Bài tập giải hệ phương trình đối xứng loại 2

Hệ Phương Trình Đối Xứng

Chuyên đề: HỆ PHƯƠNG TRÌNH ĐẠI SỐ

NHỮNG NỘI DUNG CƠ BẢNI. Hệ phương trình đối xứng loại 1:Phần 1- Định nghĩa chung: Dựa vào lý thuyết đa thức đối xứng.( Phương trình n ẩn x1, x2, …, xn gọi là đối xứng với n ẩn nếu thay xi bởi xj; xj bởi xi thì phương trình không thay đổi.( Khi đó phương trình luôn được biểu diễn dưới dạng: x1 + x2 + … + xn x1x2 + x1x3 + … + x1xn + x2x1 + x2x3 + … + xn-1xn …………………………. x1x2 … xn( Hệ phương trình đối xứng loại một là hệ mà trong đó gồm các phương trình đối xứng.( Để giải được hệ phương trình đối xứng loại 1 ta phải dùng định lý Viét.* Nếu đa thức F(x) = a0xn + a1xn(1 +… an, a0 ≠ 0, ai ( P có nhgiệm trên P là c1, …, cn thì: (Định lý Viét tổng quát)Phần 2 – Hệ phương trình đối xứng loại 1 hai ẩn:A. LÝ THUUYẾT1. Định lý Viét cho phương trình bậc 2: Nếu phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm x1, x2 thì:

Ngược lại, nếu 2 số x1, x2 có thì x1, x2 là nghệm của phương trình X2 ( SX + P = 0.2. Định nghĩa:, trong đó 3.Cách giải: Bước 1: Đặt điều kiện (nếu có). Bước 2: Đặt S = x + y, P = xy với điều kiện của S, P và . Bước 3: Thay x, y bởi S, P vào hệ phương trình. Giải hệ tìm S, P rồi dùng Viét đảo tìm x, y.Chú ý:+ Cần nhớ: x2 + y2 = S2 – 2P, x3 + y3 = S3 – 3SP.+ Đôi khi ta phải đặt ẩn phụ u = u(x), v = v(x) và S = u + v, P = uv.+ Có những hệ phương trình trở thành đối xứng loại 1 sau khi đặt ẩn phụ.4. Bài tập: Loại 1: Giải hệ phương trìnhVí dụ 1. Giải hệ phương trình .GIẢIĐặt , điều kiện . Hệ phương trình trở thành:.Ví dụ 2. Giải hệ phương trình .GIẢIĐặt , điều kiện Hệ phương trình trở thành:.Ví dụ 3. Giải hệ phương trình .GIẢIĐiều kiện .Hệ phương trình tương đương với: Đặt ta có:.

Ví dụ 4. Giải hệ phương trình .GIẢIĐiều kiện . Đặt , ta có: và .Thế vào (1), ta được:

Suy ra:.Loại 2: Điều kiện tham số để hệ đối xứng loại (kiểu) 1 có nghiệmPhương pháp giải chung:+ Bước 1: Đặt điều kiện (nếu có).+ Bước 2: Đặt S = x + y, P = xy với điều kiện của S, P và (*).+ Bước 3: Thay x, y bởi S, P vào hệ phương trình. Giải hệ tìm S, P theo m rồi từ điều kiện (*) tìm m.Chú ý:Khi ta đặt ẩn phụ u = u(x), v = v(x) và S = u + v, P = uv thì nhớ tìm chính xác điều kiện của u, v.Ví dụ 1 (trích đề thi ĐH khối D – 2004). Tìm điều kiện m để hệ phương trình sau có nghiệm thực:.

GIẢIĐiều kiện ta có:

Đặt , Hệ phương trình trở thành:.Từ điều kiện ta có .Ví dụ 2. Tìm điều kiện m để hệ phương trình có nghiệm thực.GIẢI.Đặt S = x + y, P = xy, Hệ phương trình trở thành: .Suy ra S và P là nghiệm của phương trình .Từ điều kiện ta suy ra hệ có nghiệm .Ví dụ 3. Tìm điều kiện m để hệ phương trình có nghiệm.GIẢIĐặt hệ trở thành:.Suy ra u, v là nghiệm (không âm) của (*).Hệ có nghiệm (*) có 2 nghiệm không âm. .

Ví dụ 4. Tìm điều kiện m để hệ phương trình có nghiệm thực.GIẢI.Đặt . Hệ phương trình trở thành: (S = u + v, P = uv).Điều kiện.Loại 3: Một số bài toán giải bằng cách đưa về hệ phương trình.

Chuyên Đề Hệ Phương Trình Đối Xứng Loại (Kiểu) I

Trang 1 CHUYÊN ðỀ HỆ PHƯƠNG TRÌNH ðỐI XỨNG LOẠI (KIỂU) I TÓM TẮT GIÁO KHOA VÀ PHƯƠNG PHÁP GIẢI TOÁN I. Hệ ñối xứng loại (kiểu) I có dạng tổng quát: f(x, y) = 0 g(x, y) = 0    , trong ñó f(x, y) = f(y, x) g(x, y) = g(y, x)   Phương pháp giải chung: i) Bước 1: ðặt ñiều kiện (nếu có). ii) Bước 2: ðặt S = x + y, P = xy với ñiều kiện của S, P và 2S 4P≥ . iii) Bước 3: Thay x, y bởi S, P vào hệ phương trình. Giải hệ tìm S, P rồi dùng Vi–et ñảo tìm x, y. Chú ý: i) Cần nhớ: x2 + y2 = S2 – 2P, x3 + y3 = S3 – 3SP. ii) ðôi khi ta phải ñặt ẩn phụ u = u(x), v = v(x) và S = u + v, P = uv. iii) Có những hệ phương trình trở thành ñối xứng loại I sau khi ñặt ẩn phụ. Ví dụ 1. Giải hệ phương trình 2 2 3 3 x y xy 30 x y 35  + =  + = . GIẢI ðặt S x y, P xy= + = , ñiều kiện 2S 4P≥ . Hệ phương trình trở thành: 2 2 30 PSP 30 S 90S(S 3P) 35 S S 35 S  = =  ⇔    − =   − =     S 5 x y 5 x 2 x 3 P 6 xy 6 y 3 y 2    = + = = =      ⇔ ⇔ ⇔ ∨       = = = =       . Ví dụ 2. Giải hệ phương trình 3 3 xy(x y) 2 x y 2  − = −  − = . GIẢI ðặt t y, S x t, P xt= − = + = , ñiều kiện 2S 4P.≥ Hệ phương trình trở thành: 3 3 3 xt(x t) 2 SP 2 x t 2 S 3SP 2  + = =  ⇔   + = − =   S 2 x 1 x 1 P 1 t 1 y 1   = = =    ⇔ ⇔ ⇔     = = = −     . Ví dụ 3. Giải hệ phương trình 2 2 2 2 1 1 x y 4 x y 1 1 x y 4 x y  + + + =  + + + = . GIẢI ThS. ðoàn Vương Nguyên Trang 2 ðiều kiện x 0, y 0≠ ≠ . Hệ phương trình tương ñương với: 2 2 1 1 x y 4 x y 1 1 x y 8 x y        + + + =                 + + + =          ðặt 2 1 1 1 1 S x y ,P x y ,S 4P x y x y             = + + + = + + ≥                      ta có: 2 1 1 x y 4 S 4 S 4 x y P 4 1 1S 2P 8 x y 4 x y        + + + =     = =         ⇔ ⇔      =− =      + + =         1 x 2 x 1x 1 y 1 y 2 y  + =  = ⇔ ⇔    = + = . Ví dụ 4. Giải hệ phương trình 2 2x y 2xy 8 2 (1) x y 4 (2)  + + =   + = . GIẢI ðiều kiện x, y 0≥ . ðặt t xy 0= ≥ , ta có: 2xy t= và (2) x y 16 2t⇒ + = − . Thế vào (1), ta ñược: 2t 32t 128 8 t t 4− + = − ⇔ = Suy ra: xy 16 x 4 x y 8 y 4  = =  ⇔   + = =   . II. ðiều kiện tham số ñể hệ ñối xứng loại (kiểu) I có nghiệm Phương pháp giải chung: i) Bước 1: ðặt ñiều kiện (nếu có). ii) Bước 2: ðặt S = x + y, P = xy với ñiều kiện của S, P và 2S 4P≥ (*). iii) Bước 3: Thay x, y bởi S, P vào hệ phương trình. Giải hệ tìm S, P theo m rồi từ ñiều kiện (*) tìm m. Chú ý: Khi ta ñặt ẩn phụ u = u(x), v = v(x) và S = u + v, P = uv thì nhớ tìm chính xác ñiều kiện u, v. Ví dụ 1 (trích ñề thi ðH khối D – 2004). Tìm ñiều kiện m ñể hệ phương trình sau có nghiệm thực: x y 1 x x y y 1 3m  + =   + = − . GIẢI ThS. ðoàn Vương Nguyên Trang 3 ðiều kiện x, y 0≥ ta có: 3 3 x y 1 x y 1 x x y y 1 3m ( x) ( y) 1 3m   + = + =  ⇔   + = − + = −    ðặt S x y 0,P xy 0= + ≥ = ≥ , 2S 4P.≥ Hệ phương trình trở thành: 2 S 1 S 1 P mS 3SP 1 3m  = =  ⇔    =− = −  . Từ ñiều kiện 2S 0,P 0,S 4P≥ ≥ ≥ ta có 10 m 4 ≤ ≤ . Ví dụ 2. Tìm ñiều kiện m ñể hệ phương trình 2 2 x y xy m x y xy 3m 9  + + =  + = − có nghiệm thực. GIẢI 2 2 x y xy m (x y) xy m xy(x y) 3m 9x y xy 3m 9  + + = + + =  ⇔    + = −+ = −  . ðặt S = x + y, P = xy, 2S 4P.≥ Hệ phương trình trở thành: S P m SP 3m 9  + =  = − . Suy ra S và P là nghiệm của phương trình 2t mt 3m 9 0− + − = S 3 S m 3 P m 3 P 3  = = −  ⇒ ∨   = − =   . Từ ñiều kiện ta suy ra hệ có nghiệm 2 2 3 4(m 3) 21 m m 3 2 3 (m 3) 12 4  ≥ − ⇔ ⇔ ≤ ∨ ≥ + − ≥ . Ví dụ 3. Tìm ñiều kiện m ñể hệ phương trình x 4 y 1 4 x y 3m  − + − =   + = có nghiệm. GIẢI ðặt u x 4 0, v y 1 0= − ≥ = − ≥ hệ trở thành: 2 2 u v 4u v 4 21 3mu v 3m 5 uv 2  + = + =  ⇔  − + = − =   . Suy ra u, v là nghiệm (không âm) của 2 21 3mt 4t 0 2 − − + = (*). Hệ có nghiệm ⇔ (*) có 2 nghiệm không âm / 3m 130 0 132S 0 m 7 21 3m 3 0P 0 2  −∆ ≥  ≥ ⇔ ≥ ⇔ ⇔ ≤ ≤    −  ≥≥    . ThS. ðoàn Vương Nguyên Trang 4 Ví dụ 4. Tìm ñiều kiện m ñể hệ phương trình 2 2x y 4x 4y 10 xy(x 4)(y 4) m  + + + =  + + = có nghiệm thực. GIẢI 2 22 2 2 2 (x 4x) (y 4y) 10x y 4x 4y 10 xy(x 4)(y 4) m (x 4x)(y 4y) m   + + + = + + + = ⇔   + + = + + =   . ðặt 2 2u (x 2) 0, v (y 2) 0= + ≥ = + ≥ . Hệ phương trình trở thành: u v 10 S 10 uv 4(u v) m 16 P m 24  + = =  ⇔   − + = − = +   (S = u + v, P = uv). ðiều kiện 2S 4P S 0 24 m 1 P 0  ≥ ≥ ⇔ − ≤ ≤  ≥ . BÀI TẬP Giải các hệ phương trình sau 1. 2 2 x y xy 5 x y xy 7  + + =  + + = . ðáp số: x 1 x 2 y 2 y 1  = =  ∨   = =   . 2. 2 2x xy y 3 2x xy 2y 3  + + =  + + = − . ðáp số: x 1 x 3 x 3 y 1 y 3 y 3    = − = = −   ∨ ∨     = − = − =      . 3. 3 3 x y 2xy 2 x y 8  + + =  + = . ðáp số: x 2 x 0 y 0 y 2  = =  ∨   = =   . 4. 3 3x y 7 xy(x y) 2  − =  − = . ðáp số: x 1 x 2 y 2 y 1  = − =  ∨   = − =   . 5. 2 2 x y 2xy 5 x y xy 7  − + =  + + = . ðáp số: 1 37 1 37 x xx 2 x 1 4 4 y 1 y 2 1 37 1 37 y y 4 4   − + = =  = = −      ∨ ∨ ∨       = = − − − − +     = =     . 6. 2 2 2 2 1 (x y)(1 ) 5 xy 1 (x y )(1 ) 49 x y  + + =  + + = . ðáp số: x 1 x 17 3 5 7 3 5 x x 2 2 7 3 5 7 3 5 y yy 1 y 1 2 2    = − = −   − +   = =   ∨ ∨ ∨   − +   = =   = − = −          . ThS. ðoàn Vương Nguyên Trang 5 7. x y y x 30 x x y y 35  + =   + = . ðáp số: x 4 x 9 y 9 y 4  = =  ∨   = =   . 8. x y 7 1 y x xy x xy y xy 78  + = +  + = y 9 y 4  = =  ∨   = =   . 9. ( ) 2 23 3 3 3 2(x y) 3 x y xy x y 6  + = +  + = . ðáp số: x 8 x 64 y 64 y 8  = =  ∨   = =   . 10. Cho x, y, z là nghiệm của hệ phương trình 2 2 2x y z 8 xy yz zx 4  + + =  + + = . Chứng minh 8 8x, y, z 3 3 − ≤ ≤ . HƯỚNG DẪN GIẢI Hệ phương trình 2 2 2 2 2x y 8 z (x y) 2xy 8 z xy z(x y) 4 xy z(x y) 4   + = −  + − = − ⇔ ⇔   + + = + + =   2 2(x y) 2[4 z(x y)] 8 z xy z(x y) 4  + − − + = −⇔   + + = 2 2(x y) 2z(x y) (z 16) 0 xy z(x y) 4  + + + + − =⇔   + + = 2 2 x y 4 z x y 4 z xy (z 2) xy (z 2)  + = − + = − −  ⇔ ∨   = − = +   . Do x, y, z là nghiệm của hệ nên: 2 2 2 2 2 (4 z) 4(z 2) 8 8 (x y) 4xy z ( 4 z) 4(z 2) 3 3  − ≥ − + ≥ ⇔ ⇔ − ≤ ≤ − − ≥ + . ðổi vai trò x, y, z ta ñược 8 8x, y, z 3 3 − ≤ ≤ . 11. x y 1 1 1 16 16 2 x y 1        + =          + = . ðáp số: 1 x 2 1 y 2  =   = . 12. sin (x y) 2 2 2 1 2(x y ) 1 π + =  + = HƯỚNG DẪN GIẢI Cách 1: sin (x y) 2 2 2 22 2 sin (x y) 0 x y (1)2 1 2(x y ) 1 2(x y ) 1 (2)2(x y ) 1 π +  π + = + ∈ =    ⇔ ⇔     + = + =+ =    Z 2 2 2 2 1 2 2 x x1 2 2 2(2) x y 2 x y 2 12 2 2y y 2 2 2    ≤ − ≤ ≤  ⇔ + = ⇒ ⇒ ⇒ − ≤ + ≤    ≤ − ≤ ≤    . x y 0 (1) x y 1  + = ⇒  + = ± thế vào (2) ñể giải. ThS. ðoàn Vương Nguyên Trang 6 Cách 2: ðặt S = x + y, P = xy. Hệ trở thành: sinS 22 S2 1 4P 2S 12(S 2P) 1 π  ∈ =  ⇔    = −− =  Z . Từ ñiều kiện 2S 4P≥ ta suy ra kết quả tương tự. Hệ có 4 nghiệm phân biệt 1 1 1 1 x x x x 2 2 2 2 1 1 1 1 y y y y 2 2 2 2          = = − = = −      ∨ ∨ ∨          = = − = − =          . Tìm ñiều kiện của m ñể các hệ phương trình thỏa yêu cầu 1. Tìm m ñể hệ phương trình 2 2x xy y m 6 2x xy 2y m  + + = +  + + = có nghiệm thực duy nhất. HƯỚNG DẪN GIẢI Hệ có nghiệm duy nhất suy ra x = y, hệ trở thành: 2 2 2 2 2 3x m 6 3x 6 m m 3 m 21x 4x m x 4x 3x 6    = +  − = = −  ⇔ ⇒    =+ = + = −     . + m = – 3: 2 2 2x xy y 3 (x y) xy 3 2(x y) xy 3 2(x y) xy 3   + + =  + − = ⇔   + + = − + + = −   x y 0 x y 2 x 3 x 3 x 1 xy 3 xy 1 y 1y 3 y 3     + = + = − = = − = −     ⇔ ∨ ⇔ ∨ ∨         = − = = −= − =         (loại). + m = 21: 2 2 2x xy y 27 (x y) xy 27 2x xy 2y 21 2(x y) xy 21   + + =  + − = ⇔   + + = + + =   x y 8 x y 6 x 3 xy 37 xy 9 y 3   + = − + = =    ⇔ ∨ ⇔     = = =     (nhận). Vậy m = 21. 2. Tìm m ñể hệ phương trình: 2 2 x xy y m 1 x y xy m  + + = +  + = HƯỚNG DẪN GIẢI 2 2 x xy y m 1 (x y) xy m 1 xy(x y) mx y xy m  + + = + + + = +  ⇔    + =+ =  x y 1 x y m xy m xy 1  + = + =  ⇔ ∨   = =   . Hệ có nghiệm thực dương 2 m 0 1 0 m m 2 1 4m m 4 4  ≥ ∨ ≥ . Vậy 10 m m 2 4 < ≤ ∨ ≥ . ThS. ðoàn Vương Nguyên Trang 7 3. Tìm m ñể hệ phương trình x y m x y xy m  + =   + − = có nghiệm thực. HƯỚNG DẪN GIẢI ( ) 22 x y mx y mx y m m m x y xy m xyx y 3 xy m 3  + =  + = + =  ⇔ ⇔   −  + − = =+ − =      . Suy ra x, y là nghiệm (không âm) của phương trình 2 2 m mt mt 0 3 − − + = (*). Hệ có nghiệm ⇔ (*) có 2 nghiệm không âm / 2 2 0 m 4m 0 m 0 S 0 m 0 1 m 4 P 0 m m 0  ∆ ≥ − ≤  =  ⇔ ≥ ⇔ ≥ ⇔    ≤ ≤  ≥ − ≥    . Vậy m 0 1 m 4= ∨ ≤ ≤ . 4. Tìm m ñể hệ phương trình 2 2 2 x y 2(1 m) (x y) 4  + = +  + = có ñúng 2 nghiệm thực phân biệt. HƯỚNG DẪN GIẢI 2 2 2 2 2 x y 2(1 m) (x y) 2xy 2(1 m) (x y) 4 (x y) 4   + = +  + − = + ⇔   + = + =   xy 1 m xy 1 m x y 2 x y 2  = − = −  ⇔ ∨   + = + = −   . Hệ có ñúng 2 nghiệm thực phân biệt khi ( ) 2 2 4(1 m) m 0± = − ⇔ = . 5. Cho x, y là nghiệm của hệ phương trình 2 2 2 x y 2m 1 x y m 2m 3  + = −  + = + − . Tìm m ñể P = xy nhỏ nhất. HƯỚNG DẪN GIẢI ðặt S x y, P xy= + = , ñiều kiện 2S 4P.≥ 2 2 2 2 2 x y 2m 1 S 2m 1 x y m 2m 3 S 2P m 2m 3  + = − = −  ⇔   + = + − − = + −   2 2 2 S 2m 1S 2m 1 3(2m 1) 2P m 2m 3 P m 3m 2 2  = − = − ⇔ ⇔   − − = + − = − +   Từ ñiều kiện suy ra 2 2 4 2 4 2(2m 1) 6m 12m 8 m . 2 2 − + − ≥ − + ⇔ ≤ ≤ Xét hàm số 23 4 2 4 2f(m) m 3m 2, m 2 2 2 − + = − + ≤ ≤ . Ta có 4 2 11 6 2 4 2 4 2min f(m) f , m ; 2 4 2 2    − − − +  = = ∀ ∈        Vậy 11 6 2 4 2min P m 4 2 − − = ⇔ = .

Bạn đang xem bài viết Hệ Phương Trình Đối Xứng Loại 1 Và Bài Tập Ứng Dụng trên website Maiphuongus.net. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!