Cập nhật thông tin chi tiết về Giải Phương Trình Vô Tỉ Bằng Đạo Hàm mới nhất trên website Maiphuongus.net. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất.
1.2. Các dạng bài tập Với hàm đặc trưng Dạng2: Với hàm đặc trưng 2. Bài tập. Bài tập về ứng dụng tính đơn điệu vào giải phương trình. Bài 1. Giải phương trình sau: Lời giải: +)Đk :x<2+) Xét hàm số trên +) Ta có Suy ra f(x) đồng biến trên khoảng Dùng máy tính kiểm tra được là nghiệm . Vậy phương trình có nghiệm duy nhất . Bài 2. Giải phương trình sau: (ĐHQG HN-07) Lời giải: +) Đ/K: +)Ta thấy là một nghiệm .+) Xét hàm số +) Ta có f(x) đồng biến trên .Vậy là nghiệm duy nhất của phương trình. Bài 3. Giải phương trình sau: Lời giải: Ta có +) Đ/K: +) Ta có +)Đặt .Phương trình trở thành : +) Với thì vô nghiệm +) Vời , bình phương hai vế ta có +) Ta thấy t=1 là một nghiệm của phương trình +) Xét hàm số +)nghịch biến trên +) Xét hàm +) đồng biến trên +) Vậy t=1 là nghiệm duy nhất .Với t=1 hai nghiệm x=0; x=2 Bài 4. Giải phương trình: Lời giải: +)Ta có +) Xét hàm số Ta có đồng biến. +) Khi đó Vậy phương trình có ba nghiệm x=1; Bài 5. Giải phương trình: Lời giải: Đ/K: +) Ta có Pt: +) Xét hàm trên +) đồng biến trên +) Khi đó phương trình Vậy phương trình có hai nghiệm Bài 6. Giải phương trình: (Olimpic30/04/2011) +) Ta cần phân tích pt về dạng: , với hàm cần xét có dạng . Với f(t) đồng biến. Do đó Bài 7. Giải phương trình : (Olympic30/04/09). Lời giải: Ta đưa phương trình về dạng Đồng nhất các hệ số ta tìm được Khi đó pt: Vời đồng biến. Ta có Vậy phương trình có nghiệm Bài 8.Giải phương trình: Lời giải: Ta cần đưa phương trình về dạng Đồng nhất hệ số ta tìm được Phương trình Với đồng biến Ta có Vậy phương trình có nghiệm Bài 9. Giải phương trình (HSG Hải Phòng 2010) Lời giải : Ta có Xét hàm số đồng biến. Vậy phương trình có nghiệm x=0. Bài10. Giải phương trình (HSG Quảng Bình 2012) Đ/K:Tacó: Xét hàm số đồng biến Phương trình:. Vậy phương trình có hai nghiệm x=0, x=1 Bài11:Giải phương trình: ( Chuyên Lê Quý Đôn- Bà Rịa vũng Tàu) Lời giải :+) ĐKXĐ:a có: Xét hàm số đồng biến Ta có +) Xét .Đặt =cost, , phương trình trở thành Mà suy ra Do phương trình là bậc ba nên có không quá ba nghiệm. Vậy phương trình đã cho có ba nghiệm Bài 12.Giải phương trình : +) Ta thấy phương trình chỉ có nghiệm trong khoảng Ta có Với . Xét hàm số đồng biến trên Ta có Vậy phương trình có nghiệm duy nhất . Bài 13. Giải phương trình (HSG Nghệ An2012) Lời giải:+) ĐKXĐ: +) Phương trình đã cho tương đương với +)Xét hàm số ; Suy ra hàm số liên tục và đồng biến trên Khi đó: Bài 14. Giải phương trình sau: (HSG Thái Bình 2011) Lời giải: +) ĐKXĐ: +) Xét hàm số đồng biến trên Vậy phương trình có nghiệm Bài 15: Giải phương trình sau: Lời giải: +) ĐKXĐ: +) Phương trình +) Xét hàm số đồng biến .+) Phương trình +) Xét hàm phương trình g(x)=0 có nhiều nhất là hai nghiệm, mà g(0)=g(1)=0. Vậy phương trình có hai nghiệm x=0, x=2. Bài16. Giải phương trình : ( HSG Hải Dương ) Lời giải: +) ĐKXĐ : +) Ta có : +) Xét hàm số nghịch biến. +) Phương trình Vậy phương trình có nghiệm . 2.2. Bài tập ứng dụng tính đơn điệu vào giải hệ phương trình Hệ loại này ta gặp nhiều ở hai dạng với f là hàm đơn điệu trên tập D và x,y thuộc D .Nhiều khi ta cần phải đánh giá ẩn x,y để x,y thuộc tập mà hàm f đơn điệu Một phương trình trong hệ có dạng f(x)=f(y) , phương trình còn lại giúp ta giới hạn x,y thuộc tập D để trên đó hàm f đơn điệu Bài1 Giải hệ phương trình Giải . Từ PT (2) ta có Xét hàm số có do đó f(t) nghịch biến trên khoảng (-1;1) hay PT (1) thay vào PT (2) ta được PT : Đặt a=x4 ≥0 và giải phương trình ta được Bài2. Giải hệ : Lời giải : Từ pt(1) ta xét hàm hs đồng biến Khi đó Thay vào(2) :hệ có nghiệm Bài3. Giải hệ : (x, y Î R). (Đề thi ĐH 2010-KA) Lời giải ĐK : . Pt (1) Xét hàm : đồng biến Pt Nghĩa là : Pt (2) trở thành Xét hàm số trên < 0 Mặt khác : nên (*) có nghiệm duy nhất x = và y = 2.. x = và y = 2 Bài 4. (Đề thi thử Hà Tĩnh 2013) Giải hệ phương trình: (I) Hướng dẫn cách giải:Biển đổi phương trình (1) về dạng 3x + x = 3y + y (3) Thiết lập hàm số: f(t) = 3t + tChứng minh f(t) là hàm đồng biến, (3) f(x) = f(y) x = y Cách giải: (I) Þ f(t) là hàm đồng biến, (3) f(x) = f(y) x = y Nên (I) x = y = ± 2Vậy hệ có hai nghiệm: (2;2) ; (-2; 2) Bài 5.(Tạp chí toán học tuổi trẻ tháng 5- 2012)Giải hệ (I) Hướng dẫn cách giải: Nhận dạng: Đây là hệ phương trình đối xứng loại 2 nên có 1 nghiệm x = y Lấy (1) - (2) và đưa phương trình về dạng Thiết lập hàm số: f(t)= , t [-;4] Cách giải: Điều kiện - Lấy (1) - (2) và đưa phương trình về dạng (3) Xét hàm số: f(t)= , t [-;4]Þ f'(t) = t (-;4) Þ f(t) đồng biến trên (-;4) (3) Suy ra: (pt vô tỉ dạng cơ bản) Giải pt được 2 nghiệm : x=3, x= (thỏa mãn điều kiện) Vậy hệ có 2 nghiệm (3; 3), Bài 6.G hệ phương trình: (1) +) Với thì , Hệ phương trình chỉ có nghiệm với y. +) Vì nên từ phương trình (2) của hệ suy ra . (3) Thay vào phương trình (3) ta được: (2) +) Xét hàm số: với với mọi là hàm đồng biến trên . Mà +) Thay vào phương trình (2) của hệ ta có : . Thử lại thấy thỏa mãn hệ phương trình đã cho. Kết luận : Hệ phương trình đã có nghiệm duy nhất Bài 7: (ĐH 2012)Giải hệ phương trình (x, y Î R). Lời giải :Pt Pt Xét hàm số suy ra hàm số nghịch biến , pt Thay vào (2): Vậy hệ có nghiệm 3.Bài tập tự luyện: Bài1: Giải các phương trình sau: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. (HSG Lâm Đồng) 14. (HSG Ninh Bình) 15. 16. (HSGQuảng Nam) Bài2. Giải các hệ phương trình: 1)2) 3)4) 5)(HSG 2013) 6) 7) ( HSG HD 2012) 8)(i Dương 13-14) 9) KA 13Giải Phương Trình Vô Tỉ Bằng Cách Chuyển Về Hệ Phương Trình Hữu Tỉ
Trong quá trình phát triển , xã hội luôn đề ra những yêu cầu mới cho sự nghiệp đào tạo con người . Chính vì vậy mà dạy toán không ngừng được bổ sung và đổi mới để đáp ứng sự ra đời của nó và sự đòi hỏi của xã hội . Vì vậy mỗi người giáo viên nói chung phải luôn luôn tìm tòi , sáng tạo , đổi mới phương pháp dạy học để đáp ứng với chủ trương đổi mới của Đảng và nhà nước đặt ra .
Trong chương trình môn toán ở các lớp THCS kiến thức về phương trình vô tỉ không nhiều song lại rất quan trọng . Đó là một trong những tiền đề để học sinh tiếp tục học lên ở THPT.
Khi giải toán về phương trình vô tỉ đòi hỏi học sinh phải năm vững các kiến thức cơ bản về căn thức , phương trình , hệ phương trình , các phép biến đổi đại số .Học sinh biết vận dụng linh hoạt , sáng tạo các kiến thức , kỹ năng từ đơn giản đến phức tạp.
Đặc biệt ,những năm gần đây trong các kỳ thi học sinh giỏi huyện , tỉnh hay trong các kỳ thi tuyển sinh vào THPT các em thường gặp các bài toán về giải phương trình vô tỉ. Song vì các em ít được tiếp xúc , số lượng bài tập trong sách giáo khoa rất ít nên việc định hướng cho các em về phương pháp giải còn rất khó khăn.
Phần I : Lý do nghiên cứu Cơ sở lý luận: Trong quá trình phát triển , xã hội luôn đề ra những yêu cầu mới cho sự nghiệp đào tạo con người . Chính vì vậy mà dạy toán không ngừng được bổ sung và đổi mới để đáp ứng sự ra đời của nó và sự đòi hỏi của xã hội . Vì vậy mỗi người giáo viên nói chung phải luôn luôn tìm tòi , sáng tạo , đổi mới phương pháp dạy học để đáp ứng với chủ trương đổi mới của Đảng và nhà nước đặt ra . Trong chương trình môn toán ở các lớp THCS kiến thức về phương trình vô tỉ không nhiều song lại rất quan trọng . Đó là một trong những tiền đề để học sinh tiếp tục học lên ở THPT. Khi giải toán về phương trình vô tỉ đòi hỏi học sinh phải năm vững các kiến thức cơ bản về căn thức , phương trình , hệ phương trình , các phép biến đổi đại số .Học sinh biết vận dụng linh hoạt , sáng tạo các kiến thức , kỹ năng từ đơn giản đến phức tạp. Đặc biệt ,những năm gần đây trong các kỳ thi học sinh giỏi huyện , tỉnh hay trong các kỳ thi tuyển sinh vào THPT các em thường gặp các bài toán về giải phương trình vô tỉ. Song vì các em ít được tiếp xúc , số lượng bài tập trong sách giáo khoa rất ít nên việc định hướng cho các em về phương pháp giải còn rất khó khăn. 2. Cơ sở thực tiễn: Phương trình vô tỉ là loại toán mà học sinh trung học cơ sở coi là loại toán khó . Các bài toán về phương trình vô tỉ là một dạng toán hay và khó . Tuy nhiên , các tài liệu viết về vấn đề này rất hạn chế . Trong một số tài liệu , một số phương pháp được các tác giả đưa ra như phương pháp nâng lê luỹ thừa , phương pháp đưa về phương trình chứa ẩn trong dấu giá trị tuyệt đối , phương pháp đặt ẩn phụ , phương pháp bất đẳng thức hay phương pháp đưa về phương trình tích,Song trong quá trình bồi dưỡng học sinh giỏi , học sinh thi vào trường THPT và thực tế một số dạng bài toán về phương trình vô tỉ, tôi nhận thấy việc chuyển phương trình vô tỉ về hệ phương trình hữu tỉ có nhiều thuịân lợi hơn cho các em . Xuất phát từ những lý do trên , tôi đã suy nghĩ và qua thực tiễn quá trình bồi dưỡng học sinh giỏi tôi đưa ra phương pháp " giải phương trình vô tỉ bằng cách chuyển phương trình vô tỉ về hệ phương trình hữu tỉ". Mặc dù đã có một số tác giả viết về vấn đề này song còn rất chung chung , học sinh khó vận dụng. Do đó tôi chọn sáng kiến này nhằm đưa ra một phương pháp giải cụ thể giúp các em trong quá trình học toán . II. Mục đích nghiên cứu : + Nghiên cứu về "giải phương trình vô tỉ bằng cách chuyển phương trình vô tỉ về hệ phương trình hữu tỉ" . Giúp giáo viên nâng cáo năng lực tự ngiên cứu , đồng thời vận dụng tỏng hợp các tri thức đã học , mở rộng đào sâu . Từ đó có phương phương pháp dạy có phần nào hiệu quả hơn. +Nghiên cứu về vấn đề này để nắm được những thuận lợi , khó khăn khi dạy phần phương trình vô tỉ trong bồi dưỡng học sinh khá giỏi , từ đó định hướng nâng cao chất lượng dạy và học môn toán. +Nghiên cứu vấn đề này còn giúp giáo viên có tư liệu tham khảo và dạy thành công về phương trình vô tỉ. Nhiệm vụ nghiên cứu: Nghiên cứu tình hình dạy học và học vấn đề này ở nhà trường. Khái quát hoá một phương pháp giải phương trình vô tỉ. Tìm hiểu mức độ và kết quả đạt được khi triển khai sáng kiến. Phân tích rút ra bài học kinh nghiệm. Phạm vi và đối tượng nghiên cứu: 1. Đối tượng nghiên cứu: Các tài liệu. Giáo viên và học sinh giỏi ở đơn vị đã và đang công tác. 2. Phạm vi nghiên cứu: Phương pháp giải phương trình vô tỉ thường gặp ở trường THCS. Phương pháp nghiên cứu: Phương pháp nghiên cứu tài liệu. Phương pháp điều tra , khoả sát . Phương pháp thử nghiệm. Phương pháp tổng kết kinh nghiệm. Giả thuyết khoa học : Nâng cao chất lượng dạy và học trong và sau khi nghiên cứu áp dụng sáng kiến kinh nghiệm , giúp cho giáo viên dạy có hiệu quả hơn, học sinh ham thích học dạng toán này hơn. Phần II : Nội dung Phương pháp giải phương trình vô tỉ " chuyển phương trình vô tỉ về hệ phương trình hữu tỉ". *. Khái niệm : Phương trình vô tỉ là phương trình đại số chứa ẩn trong dấu căn thức (ở đây tôi chỉ đề cập đến những phương trình mà ẩn năm dưới dấu căn bậc hai và bậc ba , bậc bốn ). Bài 1: Giải phương trình : = 3 *Cách giải thông thường: "nâng lên luỹ thừa": Điều kiện bài toán : , khi đó hai vế của phương trình không âm , bình phương hai vế ta có : x = ( TM ĐK) Vậy phương trình có hai nghiệm =3 ; = -3 Cách giải : Chuyển về hệ phương trình hữu tỉ ĐKXĐ : Khi đó ta có : m - n = 3 (1) * Bình phương mọi căn thức rồi lấy hiệu để khử ẩn ta được : = 15 (2) Từ (1) và (2) ta có hệ : (3) Từ (3) ta có : +, * ( không thoả mãn ĐKXĐ) * (không thoả mãn ĐKXĐ) +, *, (thoả mãn điều kiện ) *, (loại ) Vậy phương trình có hai nghiệm =3 ; = -3 Bài tập 2: Giải phương trình sau : Lưu ý: Nếu phương trình này chúng ta luỹ thừa bậc ba lên thì sẽ rất khó giải , vì sẽ dẫn đến phương trình bậc cao chưa có phương pháp giải. Bằng phương pháp mới ,ta có : ĐKXĐ : Đặt , ta có phương trình : a + b = 2 (1) Ta có phương trình mối liên hệ giữa phương trình đã cho với điều kiện mới : hay (2) . Từ (1) và (2) ta có hệ : Suy ra : (TM) Vậy phương trình có1 nghiệm : x = 0. Bài 3: Giải phương trình : (3) Giải : ĐKXĐ : Đặt : Theo (3) ta có : m + n = 5 Ta lại có phương trình mới liên hệ giữa hai ẩn phụ là : Ta có hệ phương trình : Giải (*), ta có : đặt mn=t 0 : (**) Phương trình (**) có hai nghiệm : Xét các trường hợp : +, Suy ra hệ vô nghiệm +, Giải ra ta được phương trình có hai nghiệm : 81;16 Ở bài toán trên , nếu chúng ta giải bằng phương pháp khác thì rất phức tạp. Bài 4 : Giải phương trình sau : Giải : ĐKXĐ : đặt : Ta có : a + b = 1 Ta thấy : Chuyển về giải hệ : Xét các trường hợp : +, với a = 0 , b = 1 thì x = 2 ( thoả mãn ĐKXĐ ) +, với a=1 ; b =0 thì x = 1 (thoả mãn ĐKXĐ ) +, với a = -2 ; b =3 thì x =10 (thoả mãn ĐKXĐ ) Vậy phương trình đã cho có ba nghiệm : Bài 5 : Giải phương trình sau : (5) Giải : Điều kiện : Đặt Ta có hệ : (5) đặt x + y =S ; xy = P (5) + Trường hợp 1 : Ta được x = y = 1 + Trường hợp 2 : hoặc Từ đó ta được : x = 1 ; x = là nghiệm. Bài 6 : Giải phương trình sau : Từ các bài toán trên chắc hẳn chúng ta đã phần nào hình dung được những bài toán tổng quát tương ứng và cách giải chúng : Bài tập áp dụng : 1 .Giải các phương trình sau : a. b. c. d. e. f. g. h. k. 2. Tìm các giá trị của m để phương trình có nghiệm duy nhất . a, b.Chuyên Đề : Các Phương Pháp Giải Phương Trình Vô Tỉ
I. PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG 1. Bình phương 2 vế của phương trình Phương pháp Thông thường nếu ta gặp phương trình dạng : , ta thường bình phương 2 vế , điều đó đôi khi lại gặp khó khăn hãy giải ví dụ sau và ta sử dụng phép thế :ta được phương trình : Ví dụ Giải phương trình sau : Giải: Đk Bình phương 2 vế không âm của phương trình ta được:, để giải phương trình này dĩ nhiên là không khó nhưng hơi phức tạp một chút . Phương trình giải sẽ rất đơn giản nếu ta chuyển vế phương trình : Bình phương hai vế ta có : Thử lại x=1 thỏa Nhận xét : Nếu phương trình : Mà có : , thì ta biến đổi phương trình về dạng : sau đó bình phương ,giải phương trình hệ quả Bài 2. Giải phương trình sau : Giải: Điều kiện : Bình phương 2 vế phương trình ? Nếu chuyển vế thì chuyển như thế nào? Ta có nhận xét : , từ nhận xét này ta có lời giải như sau : Bình phương 2 vế ta được: Thử lại : l nghiệm Qua lời giải trên ta có nhận xét : Nếu phương trình : Mà có : thì ta biến đổi 2. Trục căn thức 2.1. Trục căn thức để xuất hiện nhân tử chung Phương pháp Một số phương trình vô tỉ ta có thể nhẩm được nghiệm như vậy phương trình luôn đưa về được dạng tích ta có thể giải phương trình hoặc chứng minh vô nghiệm , chú ý điều kiện của nghiệm của phương trình để ta có thể đánh gía vô nghiệm Ví dụ Bài 1 . Giải phương trình sau : Giải: Ta nhận thấy : v Ta có thể trục căn thức 2 vế : Dể dàng nhận thấy x=2 là nghiệm duy nhất của phương trình . Bài 2. Giải phương trình sau (OLYMPIC 30/4 đề nghị) : Giải: Để phương trình có nghiệm thì : Ta nhận thấy : x=2 là nghiệm của phương trình , như vậy phương trình có thể phân tích về dạng , để thực hiện được điều đó ta phải nhóm , tách như sau : Dễ dàng chứng minh được : Bài 3. Giải phương trình : Giải :Đk Nhận thấy x=3 là nghiệm của phương trình , nên ta biến đổi phương trình Ta chứng minh : Vậy pt có nghiệm duy nhất x=3 2.2. Đưa về “hệ tạm “ a) Phương pháp Nếu phương trình vô tỉ có dạng , mà : ở dây C có thể là hàng số ,có thể là biểu thức của . Ta có thể giải như sau : , khi đĩ ta có hệ: b) Ví dụ Bài 4. Giải phương trình sau : Giải: Ta thấy : không phải là nghiệm Xét Trục căn thức ta có : Vậy ta có hệ: Thử lại thỏa; vậy phương trình có 2 nghiệm : x=0 v x= Bài 5. Giải phương trình : Ta thấy : , như vậy không thỏa mãn điều kiện trên. Ta có thể chia cả hai vế cho x và đặt thì bài toán trở nên đơn giản hơn Bài tập đề nghị Giải các phương trình sau : (HSG Toàn Quốc 2002) (OLYMPIC 30/4-2007) 3. Phương trình biến đổi về tích Sử dụng đẳng thức Bài 1. Giải phương trình : Giải: Bi 2. Giải phương trình : Giải: + , không phải là nghiệm + , ta chia hai vế cho x: Bài 3. Giải phương trình: Giải: pt Bài 4. Giải phương trình : Giải: Đk: Chia cả hai vế cho : Dùng hằng đẳng thức Biến đổi phương trình về dạng : Bài 1. Giải phương trình : Giải: Đk: khi đó pt đ cho tương đương : Bài 2. Giải phương trình sau : Giải: Đk: phương trình tương đương : Bài 3. Giải phương trình sau : Giải : pttt II. PHƯƠNG PHÁP ĐẶT ẦN PHỤ 1. Phương pháp đặt ẩn phụ thông thường Đối với nhiều phương trình vô vô tỉ , để giải chúng ta có thể đặt và chú ý điều kiện của nếu phương trình ban đầu trở thành phương trình chứa một biến quan trọng hơn ta có thể giải được phương trình đó theo thì việc đặt phụ xem như “hoàn toàn ” .Nói chung những phương trình mà có thể đặt hoàn toàn thường là những phương trình dễ . Bài 1. Giải phương trình: Điều kiện: Nhận xét. Đặt thì phương trình có dạng: Thay vào tìm được Bài 2. Giải phương trình: Giải Điều kiện: Đặt thì . Thay vào ta có phương trình sau: Ta tìm được bốn nghiệm là: Do nên chỉ nhận các gái trị Từ đó tìm được các nghiệm của phương trình l: Cách khác: Ta có thể bình phương hai vế của phương trình với điều kiện Ta được: , từ đó ta tìm được nghiệm tương ứng. Đơn giản nhất là ta đặt : và đưa về hệ đối xứng (Xem phần dặt ẩn phụ đưa về hệ) Bài 3. Giải phương trình sau: Điều kiện: Đặt thì phương trình trở thnh: ( với Từ đó ta tìm được các giá trị của Bài 4. (THTT 3-2005) Giải phương trình sau : Giải: đk Đặt pttt Bài 5. Giải phương trình sau : Giải: Điều kiện: Chia cả hai vế cho x ta nhận được: Đặt , ta giải được. Bài 6. Giải phương trình : Giải: không phải là nghiệm , Chia cả hai vế cho x ta được: Đặt t=, Ta có : Bài tập đề nghị Giải các phương trình sau Nhận xét : đối với cách đặt ẩn phụ như trên chúng ta chỉ giải quyết được một lớp bài đơn giản, đôi khi phương trình đối với lại quá khó giải 2. Đặt ẩn phụ đưa về phương trình thuần nhất bậc 2 đối với 2 biến : Chúng ta đã biết cách giải phương trình: (1) bằng cách Xét phương trình trở thành : thử trực tiếp Các trường hợp sau cũng đưa về được (1) Chúng ta hãy thay các biểu thức A(x) , B(x) bởi các biểu thức vô tỉ thì sẽ nhận được phương trình vô tỉ theo dạng này . a) . Phương trình dạng : Như vậy phương trình có thể giải bằng phương pháp trên nếu Xuất phát từ đẳng thức : Hãy tạo ra những phương trình vô tỉ dạng trên ví dụ như: Để có một phương trình đẹp , chúng ta phải chọn hệ số a,b,c sao cho phương trình bậc hai giải “ nghiệm đẹp” Bài 1. Giải phương trình : Giải: Đặt Phương trình trở thành : Tìm được: Bài 2. Giải phương trình : Bài 3: giải phương trình sau : Giải: Đk: Nhận xt : Ta viết Đồng nhất thức ta được: Đặt , ta được: Ta được : Bài 4. Giải phương trình : Giải: Nhận xét : Đặt ta hãy biến pt trên về phương trình thuần nhất bậc 3 đối với x và y : Pt có nghiệm : b).Phương trình dạng : Phương trình cho ở dạng này thường khó “phát hiện “ hơn dạng trên , nhưg nếu ta bình phương hai vế thì đưa về được dạng trên. Bài 1. giải phương trình : Giải: Ta đặt : khi đó phương trình trở thành : Bài 2.Giải phương trình sau : Giải Đk . Bình phương 2 vế ta có : Ta có thể đặt : khi đó ta có hệ : Do . Bài 3. giải phương trình : Giải: Đk . Chuyển vế bình phương ta được: Nhận xét : không tồn tại số để : vậy ta không thể đặt . Nhưng may mắn ta có : Ta viết lại phương trình: . Đến đây bài toán được giải quyết . Các em hãy tự sáng tạo cho mình những phương trình vô tỉ “đẹp “ theo cách trên 3. Phương pháp đặt ẩn phụ không hoàn toàn Từ những phương trình tích , Khai triển và rút gọn ta sẽ được những phương trình vô tỉ không tầm thường chút nào, độ khó của phương trình dạng này phụ thuộc vào phương trình tích mà ta xuất phát . Từ đó chúng ta mới đi tìm cách giải phương trình dạng này .Phương pháp giải được thể hiện qua các ví dụ sau . Bài 1. Giải phương trình : Giải: , ta có : Bài 2. Giải phương trình : Giải: Đặt : Khi đó phương trình trở thnh : Bây giờ ta thêm bớt , để được phương trình bậc 2 theo t có chẵn : Từ một phương trình đơn giản : , khai triển ra ta sẽ được pt sau Bài 3. Giải phương trình sau : Giải: Nhận xét : đặt , pttt: (1) Ta rút thay vào thì được pt: Nhưng không có sự may mắn để giải được phương trình theo t không có dạng bình phương . Muốn đạt được mục đích trên thì ta phải tách 3x theo Cụ thể như sau : thay vào pt (1) ta được: Bài 4. Giải phương trình: Giải . Bình phương 2 vế phương trình: Ta đặt : . Ta được: Ta phải tách làm sao cho có dạng chính phương . Nhận xét : Thông thường ta chỉ cần nhóm sao cho hết hệ số tự do thì sẽ đạt được mục đích 4. Đặt nhiều ẩn phụ đưa về tích Xuất phát từ một số hệ “đại số “ đẹp chúng ta có thể tạo ra được những phương trình vô tỉ mà khi giải nó chúng ta lại đặt nhiều ẩn phụ và tìm mối quan hệ giữa các ẩn phụ để đưa về hệ Xuất phát từ đẳng thức , Ta có Từ nhận xét này ta có thể tạo ra những phương trình vô tỉ có chứa căn bậc ba . Bài 1. Giải phương trình : Giải : , ta có : , giải hệ ta được: Bài 2. Giải phương trình sau : Giải . Ta đặt : , khi đó ta có : Bài 3. Giải các phương trình sau 5. Đặt ẩn phụ đưa về hệ: 5.1 Đặt ẩn phụ đưa về hệ thông thường Đặt và tìm mối quan hệ giữa và từ đó tìm được hệ theo u,v Bài 1. Giải phương trình: Đặt Khi đó phương trình chuyển về hệ phương trình sau: , giải hệ này ta tìm được . Tức là nghiệm của phương trình là Bài 2. Giải phương trình: Điều kiện: Đặt Ta đưa về hệ phương trình sau: Giải phương trình thứ 2: , từ đó tìm ra rồi thay vào tìm nghiệm của phương trình. Bài 3. Giải phương trình sau: Điều kiện: Đặt thì ta đưa về hệ phương trình sau: Vậy Bài 8. Giải phương trình: Giải Điều kiện: Đặt . Khi đó ta được hệ phương trình: 5.2 Xây dựng phương trình vô tỉ từ hệ đối xứng loại II Ta hãy đi tìm nguồn gốc của những bài toán giải phương trình bằng cách đưa về hệ đối xứng loại II Ta xét một hệ phương trình đối xứng loại II sau : việc giải hệ này thì đơn giản Bây giời ta sẽ biến hệ thành phương trình bằng cách đặt sao cho (2) luôn đúng , , khi đó ta có phương trình : Vậy để giải phương trình : ta đặt lại như trên và đưa về hệ Bằng cách tương tự xét hệ tổng quát dạng bậc 2 : , ta sẽ xây dựng được phương trình dạng sau : đặt , khi đó ta có phương trình : Tương tự cho bậc cao hơn : Tóm lại phương trình thường cho dưới dạng khai triển ta phải viết về dạng : v đặt để đưa về hệ , chú ý về dấu của ??? Việc chọn thông thường chúng ta chỉ cần viết dưới dạng : là chọn được. Giải phương trình: Điều kiện: Ta có phương trình được viết lại là: Đặt thì ta đưa về hệ sau: Trừ hai vế của phương trình ta được Giải ra ta tìm được nghiệm của phương trình là: Bài 6. Giải phương trình: Giải Điều kiện Ta biến đổi phương trình như sau: Đặt ta được hệ phương trình sau: Với Với Kết luận: Nghiệm của phương trình là Các em hãy xây dựng một sồ hệ dạng này ? Dạng hệ gần đối xứng Ta xt hệ sau : đây không phải là hệ đối xứng loại 2 nhưng chúng ta vẫn giải hệ được , và từ hệ này chúng ta xây dưng được bài toán phương trình sau : Bài 1 . Giải phương trình: Nhận xét : Nếu chúng ta nhóm như những phương trình trước : Đặt thì chúng ta không thu được hệ phương trình mà chúng ta có thể giải được. Để thu được hệ (1) ta đặt : , chọn sao cho hệ chúng ta có thể giải được , (đối xứng hoặc gần đối xứng ) Ta có hệ : Để giải hệ trên thì ta lấy (1) nhân với k cộng với (2): và mong muốn của chúng ta là có nghiệm Nên ta phải có : , ta chọn được ngay Ta có lời giải như sau : Điều kiện: , Đặt Ta có hệ phương trình sau: Với Với Kết luận: tập nghiệm của phương trình là: Chú ý : khi đã làm quen, chúng ta có thể tìm ngay bằng cách viết lại phương trình ta viết lại phương trình như sau: khi đó đặt , nếu đặt thì chúng ta không thu được hệ như mong muốn , ta thấy dấu của cùng dấu với dấu trước căn. Một cách tổng quát . Xét hệ: để hệ có nghiệm x = y thì : A-A’=B và m=m’, Nếu từ (2) tìm được hàm ngược thay vào (1) ta được phương trình Như vậy để xây dựng pt theo lối này ta cần xem xét để có hàm ngược và tìm được và hơn nữa hệ phải giải được. Một số phương trình được xây dựng từ hệ. Giải các phương trình sau Giải (3): Phương trình : Ta đặt : Các em hãy xây dựng những phương trình dạng này ! III. PHƯƠNG PHÁP ĐÁNH GIÁ 1. Dùng hằng đẳng thức : Từ những đánh giá bình phương : , ta xây dựng phương trình dạng Từ phương trình ta khai triển ra có phương trình : 2. Dùng bất đẳng thức Một số phương trình được tạo ra từ dấu bằng của bất đẳng thức: nếu dấu bằng ỏ (1) và (2) cùng dạt được tại thì là nghiệm của phương trình Ta có : Dấu bằng khi và chỉ khi và , dấu bằng khi và chỉ khi x=0. Vậy ta có phương trình: Đôi khi một số phương trình được tạo ra từ ý tưởng : khi đó : Nếu ta đoán trước được nghiệm thì việc dùng bất đẳng thức dễ dàng hơn, nhưng có nhiều bài nghiệm là vô tỉ việc đoán nghiệm không được, ta vẫn dùng bất đẳng thức để đánh giá được Bài 1. Giải phương trình (OLYMPIC 30/4 -2007): Giải: Đk Ta có : Dấu bằng Bài 2. Giải phương trình : Giải: Đk: Biến đổi pt ta có : Áp dụng bất đẳng thức Bunhiacopxki: Áp dụng bất đẳng thức Côsi: Dấu bằng Bài 3. giải phương trình: Ta chứng minh : và Bài tập đề nghị . Giải các phương trình sau 3. Xây dựng bài toán từ tính chất cực trị hình học 3.1 Dùng tọa độ của véc tơ Trong mặt phẳng tọa độ Oxy, Cho các véc tơ: khi đó ta có Dấu bằng xẩy ra khi và chỉ khi hai véc tơ cùng hướng , chú ý tỉ số phải dương , dấu bằng xẩy ra khi và chỉ khi 3.2 Sử dụng tính chất đặc biệt về tam giác Nếu tam giác là tam giác đều , thì với mọi điểm M trên mặt phẳng tam giác, ta luôn có với O là tâm của đường tròn .Dấu bằng xẩy ra khi và chỉ khi . Cho tam giác ABC có ba góc nhọn và điểm M tùy ý trong mặt mặt phẳng Thì MA+MB+MC nhỏ nhất khi điểm M nhìn các cạnh AB,BC,AC dưới cùng một góc Bài tập IV. PHƯƠNG PHÁP HÀM SỐ 1.Xây dựng phương trình vô tỉ dựa theo hàm đơn điệu Dựa vào kết quả : “ Nếu là hàm đơn điệu thì ” ta có thể xây dựng được những phương trình vô tỉ Xuất phát từ hàm đơn điệu : mọi ta xây dựng phương trình : , Rút gọn ta được phương trình Từ phương trình thì bài toán sẽ khó hơn Để gải hai bài toán trên chúng ta có thể làm như sau : Đặt khi đó ta có hệ : cộng hai phương trình ta được: = Hãy xây dựng những hàm đơn điệu và những bài toán vô tỉ theo dạng trên ? Bài 1. Giải phương trình : Giải: Xét hàm số , là hàm đồng biến trên R, ta có Bài 2. Giải phương trình Giải . Đặt , ta có hệ : Xét hàm số : , là hàm đơn điệu tăng. Từ phương trình Bài 3. Giải phương trình : V. PHƯƠNG PHÁP LƯỢNG GIÁC HÓA 1. Một số kiến thức cơ bản: Nếu thì có một số t với sao cho : và một số y với sao cho Nếu thì có một số t với sao cho : và một số y với sao cho Với mỗi số thực x có sao cho : Nếu : , là hai số thực thỏa: , thì có một số t với , sao cho Từ đó chúng ta có phương pháp giải toán : Nếu : thì đặt với hoặc với Nếu thì đặt , với hoặc , với Nếu : , là hai số thực thỏa: , thì đặt với Nếu , ta có thể đặt : , với , tương tự cho trường hợp khác x là số thực bất kỳ thi đặt : Tại sao lại phải đặt điều kiện cho t như vậy ? Chúng ta biết rằng khi đặt điều kiện thì phải đảm bảo với mỗi có duy nhất một , và điều kiện trên để đảm bào điều này . (xem lại vòng tròn lượng giác ) 2. Xây dựng phương trình vô tỉ bằng phương pháp lượng giác như thế nào ? Từ công phương trình lượng giác đơn giản: , ta có thể tạo ra được phương trình vô tỉ Chú ý : ta có phương trình vô tỉ: (1) Nếu thay bằng ta lại có phương trình : (2) Nếu thay x trong phương trình (1) bởi : (x-1) ta sẽ có phương trình vố tỉ khó: (3) Việc giải phương trình (2) và (3) không đơn giản chút nào ? Tương tự như vậy từ công thức sin 3x, sin 4x,.hãy xây dựng những phương trình vô tỉ theo kiểu lượng giác . 3. Một số ví dụ Bài 1. Giải phương trình sau : Giải: Điều kiện : Với : thì (ptvn) ta đặt : . Khi đó phương trình trở thành: vậy phương trình có nghiệm : Bài 2. Giải các phương trình sau : HD: Đs: HD: chứng minh vô nghiệm Bài 3 . Giải phương trình sau: Giải: Lập phương 2 vế ta được: Xét : , đặt . Khi đó ta được mà phương trình bậc 3 có tối đa 3 nghiệm vậy đó cũng chính là tập nghiệm của phương trình. Bài 4. .Giải phương trình Giải: đk: , ta có thể đặt Khi đó ptt: Phương trình có nghiệm : Bài 5 .Giải phương trình : Giải: đk Ta có thể đặt : Khi đó pttt. Kết hợp với điều kiện ta có nghiệm Bài tập tổng hợp Giải các phương trình sau (HSG Toàn Quốc 2002) (OLYMPIC 30/4-2007) CHUYÊN ĐỀ: PHƯƠNG TRÌNH VÔ TỶ PHƯƠNG PHÁP BIỂN ĐỔI TƯƠNG ĐƯƠNG Dạng 1 : Phương trình Lưu ý: Điều kiện (*) được chọn tuỳ thuôc vào độ phức tạp của hay Dạng 2: Phương trình Dạng 3: Phương trình +) (chuyển về dạng 2) +) và ta sử dụng phép thế :ta được phương trình : Bài 1: Giải phương trình: a) b) c) e) f) g) h) i) Bài 2: Tìm m để phương trình sau có nghiệm: Bài 3: Cho phương trình: -Giải phương trình khi m=1 -Tìm m để phương trình có nghiệm. Bài 4: Cho phương trình: -Giải phương trình khi m=3 -Với giá trị nào của m thì phương trình có nghiệm. II.PHƯƠNG PHÁP ĐẶT ẨN PHỤ Phương pháp đặt ẩn phụ thông thường. -Nếu bài toán có chứa và khi đó đặt (với điều kiện tối thiểu là . đối với các phương trình có chứa tham số thì nhất thiết phải tìm điều kiện đúng cho ẩn phụ). -Nếu bài toán có chứa , và (với k là hằng số) khi đó có thể đặt : , khi đó -Nếu bài toán có chứa và khi đó có thể đặt: suy ra -Nếu bài toán có chứa thì đặt với hoặc với -Nếu bài toán có chứa thì đặt với hoặc với -Nếu bài toán có chứa ta có thể đặt với Bài 1: Giải phương trình: a) b) c) d) e) f) g) h) i) Bài 2: Giải phương trình: a) b) c) d) e) f) Bài 3: Cho phương trình: -Giải phương trình với -Tìm m để phương trình có nghiệm. Bài 4: Cho phương trình: -Giải phương trình với m = 9 -Tìm m để phương trình có nghiệm. 2. Phương pháp đặt ẩn phụ không hoàn toàn Là việc sử dụng một ẩn phụ chuyển phương trình ban đầu thành một phương trình với một ẩn phụ nhưng các hệ số vẫn còn chứa x. -Từ những phương trình tích , Khai triển và rút gọn ta sẽ được những phương trình vô tỉ không tầm thường chút nào, độ khó của phương trình dạng này phụ thuộc vào phương trình tích mà ta xuất phát. Từ đó chúng ta mới đi tìm cách giải phương trình dạng này .Phương pháp giải được thể hiện qua các ví dụ sau . Bài 1. Giải phương trình : Giải: , ta có : Bài 2. Giải phương trình : Giải: Đặt : Khi đó phương trình trở thnh : Bây giờ ta thêm bớt , để được phương trình bậc 2 theo t có chẵn Từ một phương trình đơn giản : , khai triển ra ta sẽ được pt sau Bài 3. Giải phương trình sau : Giải: Nhận xét : đặt , pttt: (1) Ta rt thay vo thì được pt: Nhưng không có sự may mắn để giải được phương trình theo t không có dạng bình phương . Muốn đạt được mục đích trên thì ta phải tách 3x theo Cụ thể như sau : thay vào pt (1) ta được: Bài 4. Giải phương trình: Giải . Bình phương 2 vế phương trình: Ta đặt : . Ta được: Ta phải tách làm sao cho có dạng chình phương . Nhận xét : Thông thường ta chỉ cần nhóm sao cho hết hệ số tự do thì sẽ đạt được mục đích. Bài tập: Giải các phương trình sau: a) b) c) d) 3. Phương pháp đặt ẩn phụ chuyển về hệ. a) Dạng thông thường: Đặt và tìm mối quan hệ giữa và từ đó tìm được hệ theo u,v. Chẳng hạn đối với phương trình: ta có thể đặt: từ đó suy ra . Khi đó ta có hệ Bài tập: Giải các phương trình sau: a) b) c) b) Dạng phương trình chứa căn bậc hai và lũy thừa bậc hai: với Cách giải: Đặt: khi đó phương trình được chuyển thành hệ: Nhận xét: Dể sử dụng được phương pháp trên cần phải khéo léo biến đổi phương trình ban đầu về dạng thỏa mãn điều kiện trên để đặt ẩn phụ.Việc chọn thông thường chúng ta chỉ cần viết dưới dạng : là chọn được. c) Dạng phương trình chứa căn bậc ba và lũy thừa bậc ba. với Cách giải: Đặt khi đó phương trình được chuyển thành hệ: Bài tập: Giải các phương trình sau: 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) PHƯƠNG PHÁP HÀM SỐ Sử dụng các tính chất của hàm số để giải phương trình là dạng toán khá quen thuộc. Ta có 3 hướng áp dụng sau đây: Hướng 1: Thực hiện theo các bước: Bước 1: Chuyển phương trình về dạng: Bước 2: Xét hàm số Bước 3: Nhận xét: Với do đó là nghiệm Với do đó phương trình vô nghiệm Với do đó phương trình vô nghiệm Vậy là nghiệm duy nhất của phương trình Hướng 2: thực hiện theo các bước Bước 1: Chuyển phương trình về dạng: Bước 2: Dùng lập luận khẳng định rằng và g(x) có những tính chất trái ngược nhau và xác định sao cho Bước 3: Vậy là nghiệm duy nhất của phương trình. Hướng 3: Thực hiện theo các bước: Bước 1: Chuyển phương trình về dạng Bước 2: Xét hàm số , dùng lập luận khẳng định hàm số đơn điệu Bước 3: Khi đó Ví dụ: Giải phương trình : pt Xét hàm số , là hàm đồng biến trên R, ta có Bài tập: Giải phương trình: ,,,,,
Luyện Tập Phương Trình Vô Tỉ
1.Ví dụ: Giải các phương trình sau: Hướng dẫn giải: . Vậy là nghiệm của phương trình. Vậy là nghiệm của phương trình. B. Bài tập tương tự. Bài 1: Giải các phương trình sau: Bài 2: Giải các phương trình sau: (HD: đặt ) (HD: đặt ) .Phương pháp đặt ẩn phụ: Ví dụ: Giải phương trình : Giải: Đặt ta có Tìm t sau đó suy ra x (chú ý đối chiếu điều kiện nghiệm đúng) 2.Phương pháp đưa về hệ phương trình: Thường được dùng để giải phương trình vô tỷ có dạng Ví dụ: Giải phương trình : Đặt Khi đó ta có hệ Giải hệ tìm a;b suy ra x. 3.Phương pháp bất đẳng thức: Ví dụ: Giải phương trình: Giải: Theo BĐT Côsi ta có Do đó 4.Phương pháp lượng giác: Ví dụ: Giải phương trình: Giải: Điều kiện .Đặt và biến đổi đơn giản ta có: suy ra a và từ đó tìm được x 5.Phương pháp nhân liên hợp: Ví dụ: Giải phương trình: Giải: Phương trình tương đương với: Một số bài tập Baì 79008 Giải phương trình sau: Baì 74515 Cho phương trình: Nghiệm của phương trình là: A. Vô nghiệm B. X=2 C. Vô số nghiệm D. Kết quả khác Baì 70314 Giải phương trình : Baì 66004 Giải phương trình: A. B. C. D. Baì 62951 Giải phương trình: Baì 62917 Giải phương trình: Baì 62916 Giải phương trình: Baì 62914 Giải phương trình: Baì 62912 Giải phương trình: Baì 62911 Giải phương trình: (HD: đặt ) Ví dụ 9: Giải phương trình (Đề chính thức Olympic 30 – 4 năm 2006) Lời giải: Vì không là nghiệm của phương trình ta viết phương trình dưới dạng: Vì . Suy ra: Nếu và Nếu . Suy ra: ( Phương trình này vô nghiệm) Vậy phương trình có 2 nghiệm là: và . Mấu chốt của lời giải trên là nhận ra lượng liên hợp để tìm ra nhân tử chung là . Vậy làm cách nào để nhận ra được điều này. Sau đây, mình xin trình bày một phương pháp để tìm ra lượng nhân tử chung trên. Xét phương trình: Vì . Suy ra: Bây giờ ta chỉ cần xác định sao cho: . Suy ra: và Từ đó ta suy ra lời giải toán của bài toán như đã trình bày. Ví dụ 10: Giải phương trình (Đề đề nghị, Olympic 30 – 4 năm 2007) Lời giải: Điều kiện: Vì không là nghiệm của phương trình ta viết dưới dạng: Bằng phương pháp đã nêu trên ta tìm được . Vậy: Vì . Suy ra: Nếu và Nếu . Suy ra: ( Phương trình này vô nghiệm) Vậy phương trình có 2 nghiệm là: và . Ví dụ 11: Giải phương trình ( Thi HSGQG, năm 1995, bảng A) Lời giải: Điều kiện: Vì . Suy ra: Vì . Suy ra: Nếu . Nếu . Suy ra: Suy ra: hay ( vì ) Dễ thấy vế trái của phương trình liên tục và luôn đồng biến trên , vế phải của phương trình liên tục và luôn nghịch biến trên . Lại có là nghiệm vậy cũng là nghiệm duy nhất của phương trình . Nghiệm này loại vì . Vậy phương trình có nghiệm duy nhất . Ví dụ 12: Giải phương trình (Toán học và tuổi trẻ 365/2007) Lời giải: Điều kiện: Vì không là nghiệm của phương trình ta viết phương trình dưới dạng: Vì . Suy ra: Nếu và Nếu . Suy ra: ( Phương trình này vô nghiệm) Vậy phương trình có 2 nghiệm là và . Sau đây là một số bài tập dành cho bạn đọc Giải các phương trình sau: ( Đề đề nghị Olympic 30-4) ( Đề đề nghị Olympic 30-4) ( Đề đề nghị Olympic 30-4) ( Đề đề nghị Olympic 30-4) ( Toán học và tuổi trẻ) Sử dụng phương pháp biến đổi tương đương Dạng 1: Phương trình Dạng 2: phương trình: ( g(x,m) phải có nghĩa) Dạng 3: Phương trình: (f(x,m) và g(x,m) phải có nghĩa) Ví dụ minh hoạ : VD1: tìm m để pt sau có nghiệm: LG: Phương trình đã cho được biến đổi tương đương đưa về dạng: Do đó điều kiện để phương trình đã cho có nghiệm là: Phương pháp 2: Đặt ẩn phụ – dạng 1: Phương pháp đặt ẩn phụ dạng 1 là việc sử dụng một ẩn phụ để chuyển phương trình ban đầu thành một ohương trình với một ẩn phụ Ta lưu ý các phép đặt ẩn phụ thường gặp sau: * Nếu bài toán chứa và f(x), có thể đặt , điều kiện tối thiểu , khi đó * Nếu bài toán chưa và ( k=const) có thể: đặt , điều kiện tối thiểu , khi đó * Nếu bài toán chứa và f(x)+g(x)=k (k=const), có thể : đặt , khi đó * Nếu bài toán chứa hoặc có thể đặt x=acos2t * Nếu bài toán chứa có thể đặt Chú ý: Vơí các phương trình căn thức chứa tham số sử dụng pp đặt ẩn phụ, nhất thiết phải tìm điều kiện đúng cho ẩn phụ. Để tìm Đk đúng cho ẩn phụ đối vơícác phương trình vô tỉ, ta có thể lựa chọn một trong các pp sau: – Sử dụng tam thức bậc 2,ví dụ: – Sử dụng BĐT,ví dụ: Vậy Đk cho ẩn phụ là : -Sử dụng đạo hàm Ví dụ VD1: GPT: Đặt , ta có: do đó điều kiện cho ẩn phụlà Khi đó phương trình có dạng : Vậy pt có 2 nghiệm x=1, x=2 VD2:GPT: ++=0 (1) Nx: không là nghiệm của pt, chia cả 2 vế cho được (2) Đặt } , khi đó (2) hoặc t=-1/2 Bây giờ xét 2 trường hợp: TH1: Nếu n chẵn Khi đó ĐK của pt phải không âm,do đó 2 nghiệm trên bị loại. Vậy pt vô nghiệm. TH2: Nếu n lẻ Với ( vô nghiệm) Với Vậy… Bài tập tương tự: Giải các pt sau: Phương pháp 2: Đặt ẩn phụ – dạng 2: Phương pháp dùng ẩn phụ dạng 2 là việc sử dụng k ẩn phụ chuyển phương trình ban đầu thành một hệ phương trình mới với k ẩn phụ. Trong hệ mới thì k-1 phương trình nhận được từ các mỗi liên hệ giữa các đại lượng tương ứng. Chẳng hạn : + ta có thể đặt suy ra Khi đó ta thu được hệ phương trình : Ví dụ: Giải: Đk: đặt : Khi đó pt được chuyển thành hệ: giải ra được hay Bài tập tương tự: Giải các pt sau:
Bạn đang xem bài viết Giải Phương Trình Vô Tỉ Bằng Đạo Hàm trên website Maiphuongus.net. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!