Xem Nhiều 6/2023 #️ 50 Bài Toán Điển Hình Về Xác Suất # Top 13 Trend | Maiphuongus.net

Xem Nhiều 6/2023 # 50 Bài Toán Điển Hình Về Xác Suất # Top 13 Trend

Cập nhật thông tin chi tiết về 50 Bài Toán Điển Hình Về Xác Suất mới nhất trên website Maiphuongus.net. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất.

Bài 1: Một cái hộp đựng 6 viên bi đỏ và 4 viên bi xanh.Lấy lần lượt 2 viên bi từ cái hộpđó.Tính xác xuất để viên bi được lấy lần thứ 2 là bi xanh.Hướng dẫn* Số cách lấy lần lượt 2 viên bi từ hộp là 10.9 = 90 (cách)* Nếu lần 1 lấy được bi đỏ và lần 2 lấy được bi xanh thì có 6.4 = 24 (cách)* Nếu lần 1 lấy được bi xanh và lần 2 cũng là bi xanh thì có 4.3 = 12 (cách)Suy ra xác suất cần tìm là

Bài 2: Một hộp đựng 10 viên bi đỏ, 8 viên bi vàng và 6 viên bi xanh. Lấy ngẫu nhiên 4viên bi. Tính xác suất để các viên bi lấy được đủ cả 3 màu.Hướng dẫnTổng số viên bi trong hộp là 24. Gọi Ω là không gian mẫu.Lấy ngẫu nhiên 4 viên trong hộp ta có C 4cách lấy hay n( Ω ) = C 4 .Gọi A là biến cố lấy được các viên bi có đủ cả 3 màu. Ta có các trường hợp sau:+) 2 bi đỏ, 1 bi vàng và 1 bi xanh: có C 2 C1C1 = 2160 cách+) 1 bi đỏ, 2 bi vàng và 1 bi xanh: có C1 C 2C1 = 1680 cách+) 1 bi đỏ, 1 bi vàng và 2 bi xanh: có C1 C1C 2 = 1200cáchDo đó, n(A) = 5040Vậy, xác suất biến cố A là

P( A) = n( A) = 5040n(Ω) 10626≈ 47, 4%

Bài 3: Từ các chữ số của tậpT = {0;1; 2; 3; 4; 5} , người ta ghi ngẫu nhiên hai số tự nhiêncó ba chữ số khác nhau lên hai tấm thẻ. Tính xác suất để hai số ghi trên hai tấm thẻ đó cóít nhất một số chia hết cho 5.Hướng dẫn+ Có 5.A2 = 100số tự nhiên có 3 chữ số khác nhau+ CóA2 + 4.A1 =36

số tự nhiên có 3 chữ số khác nhau và chia hết cho 5.

+ Có 64 số tự nhiên có 3 chữ số khác nhau và không chia hết cho 5.+ n (Ω) =C1

.C1= 9900100 99

+ Gọi A là biến cố : “Trong hai số được ghi trên 2 tấm thẻ có ít nhất 1 số chia hết cho 5”

.C1+C1.C1= 3564

Vậy :36 64 36 35P ( A) = n ( A) = 3564 = 9 = 0, 36

n (Ω)

20

10 5 5

9900 25Bài 4: Có 20 tấm thẻ được đánh số từ 1 đến 20. Chọn ngẫu nhiên ra 5 tấm thẻ. Tính xácsuất để trong 5 tấm thẻ được chọn ra có 3 tấm thẻ mang số lẻ, 2 tấm thẻ mang số chẵntrong đó chỉ có đúng một tấm thẻ mang số chia hết cho 4.Hướng dẫn– Số phần tử của không gian mẫu là:n (Ω) = C5

= 15504 .

– Trong 20 tấm thẻ, có 10 tấm thẻ mang số lẻ, có 5 tấm thẻ mang số chẵn và chia hết cho4, 5 tấm thẻ mang số chẵn và không chia hết cho 4.– Gọi A là biến cố cần tính xác suất. Ta có:n ( A) = C 3 .C1.C1 = 3000 .Vậy, xác suất cần tính là:P ( A) = n ( A) = 3000 = 125 .

n (Ω)= 995

A 415504 646Bài 5: Gọi M là tập hợp các số tự nhiên gồm 9 chữ số khác nhau. Chọn ngẫu nhiên mộtsố từ M, tính xác suất để số được chọn có đúng 4 chữ số lẻ và chữ số 0 đứng giữa hai chữsố lẻ (các chữ số liền trước và liền sau của chữ số 0 là các chữ số lẻ).Hướng dẫnXét các số có 9 chữ số khác nhau:– Có 9 cách chọn chữ số ở vị trí đầu tiên.– CóA8 cách chọn 8 chữ số tiếp theoDo đó số các số có 9 chữ số khác nhau là: 9. A8 = 3265920Xét các số thỏa mãn đề bài:– Có C 4 cách chọn 4 chữ số lẻ.– Đầu tiên ta xếp vị trí cho chữ số 0, do chữ số 0 không thể đứng đầu và cuối nên có 7cách xếp.– Tiếp theo ta có2 cách chọn và xếp hai chữ số lẻ đứng hai bên chữ số 0.– Cuối cùng ta có 6! cách xếp 6 chữ số còn lại vào 6 vị trí còn lại.Gọi A là biến cố đã cho, khi đó n( A) = C 4 .7.A2 .6!= 302400.5 4Vậy xác suất cần tìm làP( A) = 302400 = 5 .3265920 54

11

5 6 5 6

16

Bài 6: Một tổ có 5 học sinh nam và 6 học sinh nữ. Giáo viên chọn ngẫu nhiên 3 học sinhđể làm trực nhật. Tính xác suất để 3 học sinh được chọn có cả nam và nữ.Hướng dẫn– Ta cón (Ω) = C3

= 165

– Số cách chọn 3 học sinh có cả nam và nữ là C 2 .C1 + C1.C 2 = 135– Do đó xác suất để 3 học sinh được chọn có cả nam và nữ là 135 = 9165 11

Bài 7: Hai người cùng bắn vào một mục tiêu. Xác suất bắn trúng của từng người là 0,8 và0,9. Tìm xác suất của các biến cố sao cho chỉ có một người bắn trúng mục tiêu.Hướng dẫn– Gọi A là biến cố của người bắn trúng mục tiêu với xác suất là 0.8– B là biến cố của người bắn trúng mục tiêu với xác suất là 0.9– Gọi C là biến cố cần tính xác suất thì C = A.B + A.BVậy xác suất cần tính là P(C)=0,8.(1-0,9)+(1-0,8).0,9=0,26Bài 8: Một đội ngũ cán bộ khoa học gồm 8 nhà toán học nam, 5 nhà vật lý nữ và 3 nhàhóa học nữ. Chọn ra từ đó 4 người, tính xác suất trong 4 người được chọn phải có nữ vàcó đủ ba bộ mônHướng dẫnTa có : Ω = C 4= 1820Gọi A: “2nam toán, 1 lý nữ, 1 hóa nữ”B: “1 nam toán, 2 lý nữ, 1 hóa nữ”C: “1 nam toán, 1 lý nữ, 2 hóa nữ “Thì H = A ∪ B ∪ C : “Có nữ và đủ ba bộ môn”C 2C1C1 + C1C 2C1 + C1C1C 2 3P(H ) = 8 5 3 8 5 3 8 5 3 =Ω 7

Bài 9: Một tổ có 5 học sinh nam và 6 học sinh nữ. Giáo viên chọn ngẫu nhiên 3 học sinhđể làm trực nhật. Tính xác suất để 3 học sinh được chọn có cả nam và nữ.

= 165

Cách Giải Một Số Bài Toán Cơ Bản Về Xác Suất

Dạng 1. tính xác suất của một biến cố theo định nghĩa cổ điển

Cách giải. Để tính xác suất P(A) của một biến cố ta thực hiện các bước n    Xác định không gian mẫu  , rồi tính số phần tử của 

 Xác

định

rồi

phần

Cách giải một số bài toán

tập

tả biến cố tính

cơ bản về xác suất

tử

của A  Tính P(A) theo công thức

p ( A) 

 Vd1. một tổ học sinh gồm 9 em, trong đó có 3 nữ được chia thành 3 nhóm đều nhau. Tính xác suất để mỗi nhóm có 1 nữ Lời giải. Gọi A là biến cố ” Ở 3 nhóm học sinh mỗi nhóm có 1 nữ”  Để tìm

n  

ta thực hiện

Chọn ngẫu nhiên 3 trong 9 em đưa vào nhóm thứ nhất có Chọn 3 em trong 6 em còn lại đưa vào nhóm thứ hai có Còn 3 em đưa vào nhóm thứ 3 có Vậy

C33

cách chọn

n    C93 .C63 .C33  1680

 Để tìm n(A) ta thực hiện Phân 3 nữ vào 3 nhóm nên có 3! cách khác nhau Phân 6 nam vào theo cách như trên ta có  n( A)  3!C62 .C42 .C22  540

C62 .C42 .C22

cách

C93

C63

cách chọn

cách chọn

Do đó

p ( A) 

Vd2. từ các chữ số 0; 1; 2; 3;4;5;6 viết ngẫu nhiên một số có 5 chữ số đôi một khác nhau. Tính xác suất để các số 1, 2 có mặt trong số viết được. Lời giải. Gọi A là biến cố ” số viết được có mặt các chữ số 1 và 2″ 

Gọi số viết được có dạng abcde với các chữ số đôi một khác nhau thuộc tập

X   0;1;2;3;4;5;6

. có 6 cách chọn a

4 4 bcde có A6 số. Vậy số phần tử của không gian mẫu là n    6. A6  2160

 Để tìm n(A) ta xét hai trường hợp sau A2 TH1. abcde không có mặt chữ số 0 ( có mặt các chữ số 1 và 2): có 5

cách sắp thứ tự hai chữ số 1 và 2 vào 2 vị trí trong 5 vị trí ; Sau đó có Vậy có

A43

A52 A43

cách xếp thứ tự 3 trong 4 chữ số 3;4;5;6 vào 3 vị trí còn lại. =480 số

TH2. abcde có mặt các chữ số 0;1;2; có 4 cách chọn vị trí để đặt số 0; tiếp theo có

A42

cách chọn vị trí để đặt số 1 và 2. cuối cùng có

A42

cách chọn 2

trong 4 chữ số 3;4;5;6 để đặt có thứ tự vào 2 vị trí còn lại. Vậy có 4

A42 A42

=576  n( A)  480  576  1056  Do đó

p ( A) 

 Dạng 2. tính xác suất bằng công thức cộng Cách giải. Sử dụng công thức sau để tính xác suất của biến cố đối, biến cố hợp. p( A)  1  p( A); p( A  B)  p( A)  p( B) nếu A  B  rỗng. Vd3. một hộp đựng 8 viên bi xanh, 4 viên bi đỏ. Lấy ngẫu nhiên 3 viên

bi. Tính xác suất để a) Lấy được 3 viên bi cùng màu b) Lấy được 3 viên bi khác màu c) Lấy được ít nhất 2 viên bi xanh Lời giải. a)Gọi A là biến cố ” Lấy được 3 viên bi xanh”, B là biến cố ” Lấy được 3 viên bi đỏ”, H là biến cố ” Lấy được 3 viên bi cùng màu” . Ta có H  A  B , vì A và B xung khắc nên ta có p( H )  p( A)  p( B) p ( A) 

b) biến cố ” lấy được 3 viên bi khác màu” là biến cố H . vậy p ( H )  1  p( H )  1 

c) Gọi C là biến cố ” lấy được 2 viên bi xanh và một viên bi đỏ” K là biến cố ” lấy được ít nhất 2 viên bi xanh”. ta có K  A  C , A và C xung khắc. p( K )  p( A)  p(C ) ,

p (C ) 

 Dạng 3. tính xác suất bằng quy tắc nhân Cách giải. Để tính xác suất của biến cố giao của hai biến cố độc lập A và B ta dùng công thức p( A.B)  p( A). p( B) VD4. có hai hộp chứa quả cầu, hộp thứ nhất chứa 3 quả cầu trắng, 7 quả cầu đỏ và 15 quả cầu xanh. Hộp thứ hai chứa 10 quả cầu trắng, 6 quả cầu đỏ và 9 quả cầu xanh. Từ mỗi hộp lấy ngẫu nhiên ra một quả cầu. Tính xác suất để hai quả cầu lấy ra có cùng màu? Lời giải. Gọi A là biến cố ” Quả cầu được lấy ra từ hộp thứ nhất là quả

cầu trắng” , B là biến cố ” Quả cầu được lấy ra từ hộp thứ 2 là màu trắng” Ta có

p ( A) 

màu trắng là

3 10 , p( B)  25 25 . vậy xác suất để cả hai quả cầu được lấy ra là p ( AB)  p ( A) p( B ) 

30 625 ( do A và B độc lập)

Tương tự, xác suất để hai quả cầu được lấy ra đều là màu xanh là 15 9 135 6 7 42 .  .  25 25 625 , và xác suất để lấy ra 2 quả cầu đều là màu đỏ là 25 25 625

Theo quy tắc cộng xác suất để lấy ra hai quả cầu cùng màu là 30 42 135 207    625 625 625 625

Các Bài Toán Điển Hình Lớp 5

Published on

CÁC BÀI TOÁN ĐIỂN HÌNH LỚP 5

2. a. Nội dung: Dạng toán “Tìm hai số khi biết tổng và hiệu của hai số đó” đã được học ở lớp 4. Vì vậy, trong chương trình Toán 5 gồm có 6 bài, không trình bày riêng mà chỉ phân bố rải đều trong chương trình và ở phần ôn tập cuối năm, mục đích là để củng cố kiến thức thường xuyên cho học sinh. b. Phương pháp giảng dạy: Khi dạy dạng toán này, giáo viên cần tập trung học sinh vào việc nhận dạng bài toán và nêu cách giải. Một trong những điểm cần lưu ý khi dạy bài toán này là việc tóm tắt bài toán bằng sơ đồ đoạn thẳng. Việc hướng dẫn học sinh tóm tắt bài toán bằng sơ đồ đoạn thẳng là bước quan trọng nhất. Nếu tóm tắt đầy đủ và chính xác sẽ giúp cho các em dễ dàng nhận ra mối liên hệ giữa các yếu tố của bài toán đã cho. Từ đó, các em sẽ tìm ra được cách giải thuận lợi hơn. Chẳng hạn: Một mảnh đất hình chữ nhật có chu vi 120m. Chiều dài hơn chiều rộng 10m. Tính diện tích mảnh đất đó. Điều then chốt ở đây là học sinh phải hiểu được Tổng của chiều dài và chiều rộng chính là nửa chu vi; chiều dài chính là số lớn; chiều rộng chính là số bé. Khi nhận biết được điều này, học sinh sẽ dễ dàng tìm ra được chiều dài và chiều rộng. Khi đó, giáo viên cần lưu ý thêm là: Sau khi tìm được chiều dài, chiều rộng thì còn phải tính diện tích mảnh đất. Tóm tắt: Chiều dài: Chiều rộng: 10m Diện tích: …….m2 ? Bài giải: Chiều dài mảnh đất hình chữ nhật là: (60 + 10) : 2 = 35 (m). Chiều rộng mảnh đất hình chữ nhật là: 35 – 10 = 25 (m). Diện tích mảnh đất hình chữ nhật là: 35 × 25 = 875 (m2 ). Đáp số : 875 m2 . 3. Bài toán về “Tìm hai số khi biết tổng và tỉ số của hai số đó”: a. Nội dung: 120 : 2 = 60 (m)

3. Dạng toán này cũng đã được học ở lớp 4. Trong chương trình Toán 5, dạng toán “Tìm hai số khi biết tổng và tỉ số của hai số đó” chỉ gồm có 5 bài và được phân bố rải đều và trong chương trình ôn tập cuối năm, mục đích là giúp học sinh củng cố và rèn luyện kỹ năng vận dụng. Từ đó, các em có thể tiếp cận và giải được các bài tập nâng cao nhằm mở rộng thên kiến thức. b. Phương pháp giảng dạy: Khi dạy dạng toán này, cũng tương tự như dạng toán 2, giáo viên cần tập trung học sinh vào việc nhận dạng bài toán và nêu cách giải. Một trong những điểm cần lưu ý khi dạy bài toán này là việc tóm tắt bài toán bằng sơ đồ đoạn thẳng. Chẳng hạn: Lớp 5A có 35 học sinh. Số học sinh nam bằng 4 3 số học sinh nữ. Hỏi số học sinh nữ hơn số học sinh nam là bao nhiêu em? Điều quan trọng ở đây là học sinh phải nhận dạng và tóm tắt được bài toán bằng sơ đồ đoạn thẳng.Vì vậy trước khi dạy các bài toán thuộc loại toán này, giáo viên cần củng cố, khắc sâu cho học sinh về tỉ số (đã được học ở lớp 4). Sau đó, giáo viên cần lưu ý cho học sinh là: dựa theo sơ đồ đoạn thẳng để giải bài toán. Tóm tắt: Nam: ? em Nữ : Bài giải: Theo sơ đồ, tổng số phần bằng nhau là: 3 + 4 = 7 (phần). Số học sinh nam của lớp 5A là: 35 : 7 × 3 = 15 (học sinh). Số học sinh nữ của lớp 5A là: 35 – 15 = 20 (học sinh). Số học sinh nữ nhiều hơn số học sinh nam là: 20 – 15 = 5 (học sinh). Đáp số : 5 học sinh. Ngoài ra, giáo viên có thể gợi ý để học sinh suy nghĩ và tìm cách giải khác. Chẳng hạn: Theo sơ đồ, số học sinh nữ nhiều hơn số học sinh nam số phần là: 4 – 3 = 1 (phần). Số học sinh nữ nhiều hơn số học sinh nam là: 35 : 7 = 5 (học sinh). 35 học sinh

5. Trong chương trình Toán 5, Dạng toán này là dạng toán mới. Dạng toán này gồm 20 bài toán được trình bày thành 2 bài dạy (tiết 16,17) và rải đều cho các tiết học sau đó và trong chương trình ôn tập cuối năm. Tiết 16 là tiết học giúp học sinh nhận dạng bài toán và trang bị cho học sinh 2 cách giải của dạng toán này. Tiết 17 là tiết luyện tập nhằm giúp học sinh rèn luyện kĩ năng thực hành. Các bài tập rải đều cho các bài học sau đó nhằm giúp các em rèn luyện kĩ năng, kĩ xảo cũng như mở rộng và nâng cao kiến thức. b. Phương pháp giảng dạy: Đây là dạng toán thường gặp và mang tính thực tế cao. Các em rất có hứng thú với dạng toán này. Vì vậy, khi dạy dạng toán này, giáo viên cần tập trung vào việc lấy ví dụ gần gũi, sát thực tế ở địa phương để học sinh vừa học tập vừa có thể vận dụng trong cuộc sống hằng ngày. Một trong những điểm cần lưu ý khi dạy bài toán này là việc tóm tắt bài toán sao cho ngắn gọn và đễ hiểu. Việc giải bài toán được thực hiện theo hai cách: cách “rút về đơn vị”, cách “tìm tỉ số”. Trong mỗi cách dạy cần thực hiện theo các bước cơ bản . Bước quan trong nhất là bước “rút về đơn vị” (hoặc “Tìm tỉ số”). Do vậy, khi dạy dạng toán này cần khắc sâu cho học sinh mỗi bước này trong mỗi cách giải của bài toán. Mặt khác, cũng cần lưu ý cho học sinh là: chỉ cần trình bày một trong hai cách giải của bài toán. Ví dụ : Một ô-tô trong 2 giờ đi được 90km. Hỏi trong 4 giờ ô-tô đó đi được bao nhiêu ki-lô-mét ? Khi dạy bài toán này, giáo viên cần hướng dẫn học sinh tóm tắt bài toán ngắn gọn, dễ hiểu. Tránh để học sinh ghi dài dòng, không cần thiết. Tóm tắt: 2 giờ : 90 km 4giờ : chúng tôi ? Khi hướng dẫn học sinh giải cần nhấn mạnh cho học sinh mỗi bước quan trọng trong mỗi cách, đó là: Bước 1 trong cách 1 là bước “rút về đơn vị” Trong 1 giờ ô-tô đi được là : 90 : 2 = 45 (km). Bước 1 trong cách 2 là bước ” tìm tỉ số” 4 giờ gấp 2 giờ số lần là : 4 : 2 = 2 (lần). Khi nắm chắc được mỗi bược cơ bản trong mỗi cách giải bài toán, học sinh sẽ dễ dàng tìm ra kết quả của bài toán.

6. 5.2. Trường hợp đại lượng này tăng (hoặc giảm) bao nhiêu lần thì đại lượng kia giảm hoặc tăng bấy nhiêu lần và ngược lại: a. Nội dung: Trong chương trình Toán 5, Dạng toán này là dạng toán mới. Dạng toán này gồm 10 bài toán được trình bày thành 2 bài dạy (tiết 18,19) và rải đều cho các tiết học sau đó và trong chương trình ôn tập cuối năm. Tiết 18 là tiết học giúp học sinh nhận dạng bài toán và trang bị cho học sinh 2 cách giải của dạng toán này. Tiết 19 là tiết luyện tập nhằm giúp học sinh rèn luyện kĩ năng thực hành. Các bài tập rải đều cho các bài học sau đó nhằm giúp các em rèn luyện kĩ năng, kĩ xảo cũng như mở rộng và nâng cao kiến thức. b. Phương pháp giảng dạy: Dạng toán này cũng thường gặp và mang tính thực tế cao như dạng toán 5.1. Vì vậy, khi dạy dạng toán này, giáo viên cũng cần thực hiện các bước như khi dạy dạng toán 5.1. Tuy nhiên vấn đề cần đặc biệt chú ý ở đây là sự xác định mối quan hệ giữa hai đại lượng. Vì vậy khi dạy loại toán này, giáo viên cần làm rõ mối quan hệ giữa hai đại lượng đã cho trong một bài toán. Đồng thời cần nêu thêm ví dụ gần gũi với học sinh để học sinh nắm bắt nhằm tránh nhầm lẫn với mối quan hệ giữa hai đại lượng trong các bài toán thuộc loại toán 5.1. Ví dụ : Muốn đắp xong nền nhà trong 2 ngày, cần có 12 người. Hỏi muốn đắp xong nền nhà đó trong 4 ngày thì cần bao nhiêu người? (Mức làm của mỗi người như nhau). Khi dạy bài toán này, giáo viên cần làm rõ mối quan hệ giữa số ngày và số người. Số người ở đây là số người làm trong mỗi ngày. Vì vậy cần phân tích cho học sinh thấy rõ muốn đắp xong nền nhà trong thời gian dài hơn thì cần giảm số người làm trong mỗi ngày. Đồng thời, giáo viên cần nêu thêm vài ví dụ khác để học sinh dễ nắm bắt. Chẳng hạn: Muốn quét xong lớp học trong 6 phút thì cần 2 bạn. Hỏi muốn quét xong lớp học trong 3 phút thì cần mấy bạn? (Mức làm của mỗi bạn là như nhau). Hoặc : Muốn hái xong một rẫy cà phê trong 10 ngày thì cần 6 người. Hỏi muốn hái xong rẫy cà phê trong 5 ngày thì cần bao nhiêu người? (Mức làm mỗi người như nhau). Thông qua việc phân tích hai ví dụ gần gũi với các em hằng ngày, các em sẽ nắm vững mối quan hệ giữa hai đại lượng của bài toán dạng này (Khi đại lượng này tăng (hoặc giảm) bao nhiêu lần thì đại lượng kia giảm (hoặc tăng) bấy nhiêu lần).

7. Khi học sinh đã nắm chắc mối quan hệ giữa hai đại lượng thì các em sẽ dễ dàng vận dụng phương pháp phù hợp để giải bài toán. 6. Bài toán về tỉ số phần trăm: 6.1. Dạng toán tìm tỉ số phần trăm của hai số: a. Nội dung: Dạng toán này được xem là cơ bản nhất trong các dạng toán về tỉ số phần trăm ở toán lớp 5. Trong chương trình toán 5, dạng toán này gồm hơn 10 bài toán được trình bày trong 2 tiết học (tiết 75,76) và một số bài tập nằm rải rác trong các tiết học sau đó. Dạng toán này là một trong những dạng toán tương đối khó trong chương trình toán 5 nhưng nó lại là dạng toán có nhiều ứng dụng trong thực tế. b. Phương pháp giảng dạy: Để giúp các em học tốt các bài toán về tỉ số phần trăm, học sinh cần phải hiểu và làm thành thạo dạng toán này. Tuy nhiên, muốn học tốt dạng toán này thì học sinh cần phải hiểu thấu đáo về vấn đề tỉ số. Do đó vấn đề tỉ số là nền tảng cho quá trình dạy học toán về tỉ số phần trăm. Để làm được điều đó, thì khi dạy bài “Tỉ số phần trăm”, trước khi hướng dẫn học sinh tìm hiểu hai ví dụ ở sách giáo khoa, giáo viên nêu ví dụ để cho học sinh hiểu thấu đáo vấn đề tỉ số. Chẳng hạn: Lớp em có 14 bạn nam, 16 bạn nữ. Tìm tỉ số của bạn nam và bạn nữ, tỉ số của bạn nữ và bạn nam, tỉ số của bạn nữ và cả lớp, tỉ số của bạn nam và cả lớp. Thông qua ví dụ trên, hướng dẫn cho học sinh hiểu và xác định được 4 tỉ số: Tỉ số của bạn nam và bạn nữ là: 14 : 16 = 16 14 = 8 7 . Tỉ số của bạn nữ và bạn nam là: 16 : 14 = 14 16 = 7 8 . Tỉ số của bạn nữ và cả lớp là: 16 : (16 + 14 ) = 30 16 = 15 8 . Tỉ số của bạn nam và cả lớp là: 14 : (16 + 14 ) = 30 14 = 15 7 . Khi học sinh đã hiểu rõ cách lập tỉ số của hai số, giáo viên dễ dạng hình thành cho học sinh cách tìm tỉ số phần trăm của hai số bằng cách viết thương dưới dạng số thập phân. Sau đó nhân nhẩm thương đó với 100 và viết thêm kí hiệu phần trăm (%) vào bên phải kết quả tìm được. Ví dụ : Tỉ số của bạn nam và bạn nữ là: 14 : 16 = 16 14 = 8 7 = 0,875 = 87,5%

9. của hai số thì số học sinh nữ chiếm 52,2% số học sinh toàn trường. Vậy số học sinh toàn trường là bao nhiêu %? (100%). Khi đó, giáo viên có thể gợi ý cách tóm tắt bài toán tương tự bài toán có quan hệ tỉ lệ và hướng dẫn cách trình bày để học sinh thực hiện giải bài toán. Chẳng hạn: Tóm tắt: 52,5% : 800 em 100% : chúng tôi ? Bài giải: Số học sinh nữ của trường đó là : 800 × 52,5 : 100 = 420 (em). Đáp số : 420 em. 6.3. Dạng toán ” Tìm một số khi biết một số phần trăm của nó”. a.Nội dung: Dạng toán này được hình thành trên cơ sở của bài toán dạng 6.1. Trong chương trình toán 5, dạng toán này gồm 10 bài tập được phân bố trong 2 tiết học (79,80) và một số bài tập trong các tiết học sau đó nhằm giúp các em rèn luyện kĩ năng thực hành. Đây cũng là một trong những dạng toán khó trong chương trình toán 5. Đây cũng là dạng toán mang tính thực tế cao. Nếu không khắc sâu cho học sinh thì các em rất dễ lẫn lộn với dạng toán 6.1 và 6.2. b. Phương pháp giảng dạy: Khi giải bài toán thuộc dạng này, học sinh cũng gặp phải khó khăn trong việc xác định tỉ lệ phần trăm của số cần tìm. Do đó việc hướng dẫn học sinh giải tốt bài toán ở dạng 6.2 cũng đạt được mục đích tiền đề cho bài toán thuộc dạng này. Và chìa khoá của vấn đề đó cũng chính là việc nắm vững tỉ số của hai số. Vì vậy khi học sinh đã giải bài toán ở mục 6.2 thì việc hướng dẫn học sinh giải bài toán về “Tìm một số khi biết một số phần trăm của nó” là hết sức đơn giản (các bược cũng tương tự như các bước hướng dẫn bài toán mục 6.2) Ví dụ: Học sinh khá giỏi của Trường Vạn Thịnh là 552 em, chiếm 92% số học sinh toàn trường. Hỏi Trường Vạn Thịnh có bao nhiêu học sinh ? Khi giải bài toán này, học sinh sẽ gặp khó khăn vì không biết được tỉ lệ phần trăm của học sinh toàn trường. Do đó giáo viên cần gợi mở: Căn cứ vào việc lập tỉ số của hai số thì số học sinh khá giỏi chiếm 92% số học sinh toàn trường. Vậy số học sinh toàn trường là bao nhiêu %? (100%).

10. Khi đó, giáo viên có thể gợi ý cách tóm tắt bài toán tương tự bài toán có quan hệ tỉ lệ và hướng dẫn cách trình bày để học sinh thực hiện giải bài toán. Chẳng hạn: Tóm tắt: 92% : 552 em 100% : chúng tôi ? Bài giải: Trường Vạn Thịnh có số học sinh là : 552 × 100 : 92 = 600 (em). Đáp số : 600 em 7. Bài toán về chuyển động đều: 7.1. Bài toán về tính vận tốc: a. Nội dung: Đây là dạng toán cơ bản của toán chuyển động đều. Trong chương trình toán 5, dạng toán này gồm 15 bài toán được trình bày ở tiết 130 và phân bố trong các tiết học sau đó. Dạng toán này mô phỏng những hiện tượng hằng ngày xảy ra trước mắt các em. Vì vậy, khi gặp dạng toán này, các em rất hứng thú. Trong chương trình toán 5, những bài toán thuộc dạng toán này là không khó nhằm mục đích giúp các em vận dụng để tính toán những hiện tượng đang diễn ra xung quanh các em hằng ngày. b. Phương pháp giảng dạy: Khi dạy bài toán tìm vận tốc, vấn đề trong tâm là cần hình thành cho các em quy tắc và công thức tính vận tốc. Vì vậy việc phân tích bài toán 1 ở tiết 130 là hết sức quan trọng để làm cơ sở cho việc hình thành công thức tính vận tốc. Đối với dạng toán này, học sinh gặp khó khăn trong việc hiểu khái niệm về vận tốc và đơn vị vận tốc. Vì vậy, khi dạy giáo viên cần làm rõ cho học sinh hiểu “Vận tốc là quãng đường đi được trong một đơn vị thời gian”. Khi dạy về đơn vị vận tốc cần làm rõ : Nếu đơn vị của quãng đường là ki-lô-mét, đơn vị thời gian là giờ thì đơn vị vận tốc là km/giờ. Nếu đơn vị của quãng đường là mét, đơn vị thời gian là phút thì đơn vị vận tốc là m/phút. Nếu đơn vị của quãng đường là mét, đơn vị thời gian là giây thì đơn vị vận tốc là m/giây. Khi học sinh nắm chắc khái niệm về vận tốc và đơn vị vận tốc thì các em sẽ dễ dàng thực hiện các bước giải bài toán.

11. Ví dụ : Một người chạy được 60 m trong 10 giây. Tính vận tốc chạy của người đó. Khi hướng dẫn, giáo viên cần cho học sinh hiểu rõ: vận tốc chạy của người đó chính là số mét chạy được trong 1 giây và đơn vị vận tốc ở đây là m/giây. Khi hiểu rõ vấn đề này, học sinh sẽ dễ dàng giải được bài toán. Bài giải: Vận tốc chạy của người đó là: 60 : 10 = 6 (m/giây). Đáp số : 6 m/giây. Sau khi học sinh đã hiểu và giải được bài toán này thì điều cơ bản và hết sức quan trọng đó là gợi ý để học sinh nêu quy tắc và công thức tính vận tốc: Muốn tính vận tốc ta lấy quãng đường chia cho thời gian. 7.2. Bài toán về tính quãng đường: a. Nội dung: Đây là một trong những dạng toán cơ bản của toán chuyển động đều trong chương trình toán lớp 5. Trong chương trình toán 5, dạng toán này gồm 16 bài toán được trình bày ở tiết 132 và phân bố trong các tiết học sau đó. Dạng toán này mô phỏng những hiện tượng hằng ngày xảy ra trước mắt các em. Vì vậy, khi gặp dạng toán này, các em rất hứng thú. Trong chương trình toán 5, những bài toán thuộc dạng toán này là không khó nhằm mục đích giúp các em vận dụng để tính toán những hiện tượng đang diễn ra xung quanh các em hằng ngày. b. Phương pháp giảng dạy: Khi dạy bài toán tính quãng đường vấn đề trọng tâm là cần hình thành cho các em quy tắc và công thức tính quãng đường. Vì vậy việc phân tích bài toán 1 ở tiết 132 là hết sức quan trọngđể làm cơ sở cho việc nhận xét và rút ra quy tắc, hình thành công thức tính quãng đường. Khi giải bài toán dạng này, ngoài việc hình thành quy tắc và công thức tính quãng đường, giáo viên cần lưu ý về đơn vị thời gian và đơn vị vận tốc đã cho trong bài. Ví dụ nếu đơn vị thời gian là giờ và đơn vị vận tốc là km/giờ thì học sinh tính quãng đường bằng cách lấy vận tốc nhân với thời gian. Tuy nhiên nếu đơn vị thời gian là phút và đơn vị vận tốc là km/giờ thì hướng dẫn học sinh đổi đơn vị thời gian từ phút sang giờ hoặc đổi đơn vị đo vận tốc từ km/giờ sang km/phút hoặc (m/phút) v = s : t

12. rồi mới áp dụng công thức để tính. Do đó cần khái quát cho học sinh là: để tính quãng đường cần chú ý: đơn vị thời gian và thời gian trong đơn vị vận tốc phải trùng nhau. Ví dụ: Một người đi xe đạp trong 15 phút với vận tốc 12,6 km/giờ. Tính quãng đường đi được của người đó. Khi dạy cần lưu ý ở đây đơn vị của vận tốc là km/giờ mà đơn vị thời gian là phút. Vì vậy cần hướng dẫn học sinh đổi đơn vị thời gian từ phút sang giờ rồi mới áp dụng công thức tính quãng đường. Bài giải: 15phút = 0,25giờ Quãng đường đi được của người đó là: 12,6 × 0,25 = 3,15(km). Đáp số : 3,15 km. Hoặc Bài giải: 12,6 km/giờ = 0,21 km/phút Quãng đường đi được của người đó là : 0,21 × 15 = 3,15 (km). Đáp số : 3,15 km. Hoặc Bài giải: 12,6 km/giờ = 210 m/phút Quãng đường đi được của người đó là : 210 × 15 = 3150 (m). Đáp số : 3150 m. 7.3. Bài toán về tính thời gian: a. Nội dung: Đây là một trong 3 dạng toán cơ bản của toán chuyển động đều trong chương trình toán lớp 5. Dạng toán này được hình thành trên cơ sở học sinh đã nắm chắc hai dạng toán cơ bản về chuyển động đều đó là tính vận tốc, tính quãng đường. Trong chương trình toán 5, dạng toán này gồm 16 bài toán được trình bày ở tiết 134 và phân bố trong các tiết học sau đó. Dạng toán này mô phỏng những hiện tượng hằng ngày xảy ra trước mắt các em. Vì vậy, khi gặp dạng toán này, các em rất hứng thú. Trong chương trình toán 5, những bài toán thuộc dạng toán này là không khó nhằm mục đích giúp các em vận dụng để tính toán những hiện tượng đang diễn ra xung quanh các em hằng ngày. b. Phương pháp giảng dạy:

13. Khi dạy bài toán tính quãng đường vấn đề trọng tâm là cần hình thành cho các em quy tắc và công thức tính quãng đường. Vì vậy việc phân tích bài toán 1 ở tiết 134 là hết sức quan trọng để làm cơ sở cho việc hình thành quy tắc, công thức tính thời gian. Cũng tương tự như bài toán về tính quãng đường thì ngoài việc hình thành quy tắc và công thức tính thời gian cho học sinh, giáo viên cần lưu ý về vấn đề đơn vị đo. Nếu đơn vị đo quãng đường là ki-lô-mét, đơn vị đo vận tốc là km/giờ thì đơn vị đo thời gian là giờ. Nếu đơn vị đo quãng đường là ki-kô-mét mà đơn vị đo vận tốc là m/giờ thì giáo viên cần hướng dẫn học sinh chuyển đổi đơn vị đo sao cho đơn vị đo độ dài trong đơn vị đo vận tốc trùng với đơn vị đo quãng đường. Ví dụ : Một con ốc sên bò với vận tốc 12 cm/phút. Hỏi con ốc sên đó bò được quãng đường 1,08m trong thời gian bao lâu? Khi dạy dạng toán này, giáo viên cần cho học sinh nhận xét đơn vị đo quãng đường và đơn vị đo vận tốc để từ đó chuyển đổi sao cho phù hợp trước khi vận dụng quy tắc tính thời gian. Cụ thể là: Ở đây đơn vị đo vận tốc là cm/phút, đơn vị đo quãng đường là mét. Vậy ta chưa thể áp dụng quy tắc tính thời gian trực tiếp mà cần phải chuyển đổi đơn vị đo sao cho phù hợp. Chẳng hạn: Bài giải: 12 cm/phút = 0,12 m/phút Thời gian ốc sên bò hết quãng đường 1,08 m là: 1,08 : 0,12 = 9(phút). Đáp số : 9 phút. Hoặc Bài giải: 1,08 m = 108 cm Thời gian ốc sên bò hết quãng đường 1,08 m là: 108 : 12 = 9(phút). Đáp số : 9 phút. 8. Bài toán có nội dung hình học (chu vi, diện tích, thể tích): a. Nội dung: Trong chương trình toán 5, bài toán có nội dung hình học là dạng toán chiếm dung lượng nhiều nhất gồm hơn 150 bài toán, được phân bố đan xen gần khắp chương trình Toán 5. Bài toán có nội dung hình học ở lớp 5 tiếp tục củng cố, mở rộng

14. việc áp dụng quy tắc, công thức tính chu vi, diện tích một số hình đã được học ở lớp 4 như hình bình hành, hình chữ nhật, hình vuông, hình thoi. Đồng thời tìm hiểu một số quy tắc, công thức tính chu vi diện tích một số hình như hình thang, hình tam giác, hình tròn. Tìm hiểu và áp dụng một số quy tắc, công thức tính diện tích xung quanh, diện tích toàn phần của hình hộp chữ nhật, diện tích xung quanh, diện tích toàn phần của hình lập phương, thể tích hình lập phương, thể tích hình hộp chữ nhật. b. Phương pháp giảng dạy: Đối với các bài toán có nội dung hình học thì việc hình thành biểu tượng về chu vi, diện tích, thể tích là hết sức quan trọng. Trên cơ sở học sinh có khái niệm về biểu tượng sẽ giúp các em dễ dàng hơn trong việc hình thành công thức tính chu vi, diện tích, thể tích của các hình. Chẳng hạn: Muốn hình thành công thức tính thể tích hình hộp chữ nhật, cần giúp học sinh có biểu tượng về thể tích (là toàn bộ phần chiếm chỗ bên trong của một vật). Trên cơ sở có được biểu tượng về thể tích, giáo viên đưa ra mô hình về thể tích để yêu cầu học sinh tính số hình lập phương có bên trong hình hộp chữ nhật theo gợi ý của giáo viên: + Hình hộp chữ nhật này có mấy lớp được xếp chồng lên nhau? (3 lớp). + Mỗi lớp có mấy hàng? (2 hàng). + Mỗi hàng có mấy hình lập phương? (5 hình lập phương). Từ đó, cho học sinh đối chiếu với các kích thước tương ứng của hình hộp chữ nhật để hình thành công thức tính thể tích hình hộp chữ nhật V = a × b × c

Ôn Thi Toán “Xác Suất Thống Kê”

Lý thuyết Xác suất và Thống kê toán (Statistics and Probability Theory) thường được gọi vắn tắt là “Xác suất thống kế”

1. Tại sao học ngành Marketing lại phải học môn “Xác suất thống kê”

Học toán “Xác suất thống kê” (XSTK) là môn học được đánh giá là khó nhằn với nhiều người học, thậm chí khi học ở năm 1 ĐH nhiều bạn cũng chẳng hiểu vì sao phải học toán và cụ thể là xác suất.

Thực tế là XSTK được xem là môn học thuộc khối kiến thức “Giáo dục đại cương” nhưng mức độ ứng dụng của môn học này trong cuộc sống và đặc biệt là ngành Marketing thì rất quan trọng, cụ thể là toàn bộ kiến thức trong lãnh vực “Thốn kê” sẽ được học chuyên sâu trong môn học “NGHIÊN CỨU MARKETING” và dựa trên nền tảng kiến thức này, người học có thể

Ví dụ cụ thể về một bài toán XS trong Marketing

Ví dụ cụ thể về một bài toán Thống kê trong Marketing

Để nghiên cứu về “Nhu cầu sử dụng bột giặt X” trong khu vực Quận Tân bình tại chúng tôi Trong khu vực có tổng cộng 4000 hộ gia đình, người ta tiến hành khảo sát ngẫu nhiên 400 hộ gia đình và thu được kết quả như sau:

Nhu cầu (kg/tháng/hộ)0-11-22-33-44-55-66-77-8Số hộ10358613278311810

Ước lượng nhu cầu trung bình về bột giặt X của toàn khu vực quận Tân Bình trong vòng 1 năm với độ tin cậy 95%

Người làm kế hoạch Marketing muốn đạt được độ tin cậy 99% và độ chính xác là 4.8 tấn bột giặt X thì khi ước lượng nhu cầu trung bình về bột giặt X trong Q.Tân Bình cần phải khảo sát ít nhất bao nhiêu hộ gia đình?

2. Bài giảng chi tiết

Bài giảng Xác suất thống kê:

3. Bài tập và hướng dẫn giải

Bài tập xác suất và hướng dẫn giải – file 1

Bài tập xác suất và hướng dẫn giải – file 2

Bài tập thống kê

Related

Bạn đang xem bài viết 50 Bài Toán Điển Hình Về Xác Suất trên website Maiphuongus.net. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!